BIO-DATA

❖ Name and Address: Dr. Lakshi Saikia

Principal Scientist

Associate Professor, AcSIR

Advanced Materials Group

Materials Sciences and Technology Division

CSIR-North East Institute of Science and Technology, Jorhat,

Assam, Jorhat – 785 006

Telephone: 0376 – 2370081 Extn. 2522, Mobile- +919957031635

Fax: 0376 - 2370011

E-mail: l.saikia@gmail.com/lsaikia@neist.res.in

❖ Academic Qualification: M.Sc with Inorganic Chemistry Specialization from Gauhati University and Ph.D. from CSIR-National Chemical Laboratory, Pune, India in 2008.

- ❖ Research experience and interest: More than 15 years experience in the area of heterogeneous catalysis.
- ❖ Research interest is on Nanostructured materials for Catalysis, Carbon nanomaterials, Photocatalysis, Sensing and environment, Nanoporous materials, Metal Organic Frameworks
- ❖ Total paper published in SCI journals- 66, *h*-index-21

List of publication of last five years:

Document Title	Authors	Year	Journal
Photocatalytic			
Reduction of CO ₂			
to Methanol using			
Zr(IV)-based MOF			
Composite with g-			
C ₃ N ₄ Quantum Dots	K Sonowal, N Nandal, P		
under Visible Light	Basyach, L Kalita, S L Jain		Journal of CO ₂
Irradiation	and L Saikia	2022	Utilization (IF- 7.132)
Development of			
quantum dot			
complex for			
selective detection	M Gogoi, A Borborah and L		Bulletin of Materials
4 of pyrophosphate	Saikia	2021	Science (IF- 1.392)

:41-	1		1
anion with			
fluorescence			
quenching			
Nanofiber induced			
enhancement of			
electrical and			
electrochemical			
properties in			
polymer gel			
electrolytes for			
application in			Journal of Alloys and
energy storage	S Borah, AK Guha, L Saikia,		Compounds (IF-
devices	M Deka	2021	5.316)
CuCo-Layered			
Double Hydroxide			
Nanosheet-Based			
Polyhedrons for			
Flexible	L Kumar, PK Boruah, S		
Supercapacitor	Borthakur, L Saikia, MR		ACS Applied Nano
Cells	Das, S Deka	2021	Materials (IF-5.097)
Endorsing Organic	,		(======================================
Porous Polymers in			
Regioselective and			
Unusual Oxidative			
C=C Bond			
Cleavage of			
Styrenes into			
Aldehydes and			
Anaerobic Benzyl			
Alcohol Oxidation	D Pathak, R Khatioda, H		ACS Applied
via Hydride	Sharma, AK Guha, L Saikia,		Materials & Interfaces
Elimination	B Sarma	2021	(IF-9.229)
Influence of solvent	B Sarma	2021	(IF-9.229)
on morphological			
1 0			International Journal
texture and catalytic	C Caileia D Dalva I Caileia		International Journal
activity of SnO ₂	S Saikia, P Deka, L Saikia,	2021	of Nanotechnology
nanoparticles	RC Deka	2021	(NA)
Stable Lead-halide			
Perovskite			
Quantum Dots as	S Pradhan, D Bhujel, B		
Efficient Visible	Gurung, D Sharma, S Basel,		
Light	S Rasaily, Sa Thapa, S		
Photocatalysts for	Borthakur, W Li Ling, L		37
Organic	Saikia, P Reiss, A Pariyar	2021	Nanoscale Advances
Transformations	and S Tamang	2021	(If- 4.553)
Tunable NIR-II	K, S Pradhan, S Basel, M	2020	Dalton Transactions

Emitting Silver	Clarke, B Brito, S Thapa, P		[IF-4.147]
Chalcogenide	Roy. S Borthakur, L		[11 1117]
Quantum Dots	Saikia, A Shankar, G J.		
using	Stasiuk, A Pariyar and S		
Thio/Selenourea	Tamang		
Precursors:	Turnang		
Preparation of			
MRI/NIR-II			
Multimodal			
Imaging Agent			
Hydrodistillation			
based multifaceted			
	D D Mahanta N Carma		
value addition to	B P Mahanta, N Sarma,		
Kaempferia galanga	Phirose Kemprai, T Begum,		
L. leaves, an	L Saikia, M Lal and S	2020	Industrial Crops and
agricultural residue	Haldar	2020	Products [IF- 4.28]
Efficient			
hydroxylation of			
benzene to phenol			
by H ₂ O ₂ using Ni			
doped CuWO ₄ on			
carbon nitride as	Purashri Basyach, Ankur		
catalyst under solar	Kanti Guha, Sukanya		
irradiation and its	Borthakur, Lisamoni Kalita,		Journal of Materials
structure activity	Pubali Chetia, Karanika		Chemistry A (IF-
correlation	Sonowal and Lakshi Saikia	2020	12.73)
Boosting Multiple			
Photo-Assisted and			
Temperature			
Controlled			
Reactions with a			
Single Redox-			
Switchable	M J Baruah, M Sharma, B		
Catalyst: Solvents	Das, P Saikia, L Saikia, S		
as Internal	Roy, G V Karunakar, P K		
Substrates and	Bhattacharyya and K K		Journal of Catalysis
Reducing Agent	Bania	2020	[IF- 7.92]
A ferrocene			
functionalized			
Schiff base			
containing Cu(ii)			
complex: synthesis,			
characterization and	F Rahaman Gayen, AAziz		
parts-per-million	Ali, D Bora, S Roy, S		
level catalysis for	Saha, L Saikia , R L		Dalton Transactions
1		2020	
azide alkyne	Goswamee and B Saha	2020	[IF- 4.147]

cycloaddition			
Palladium-			
Supported Nanoceria: A			
Highly Efficient			
Catalyst			
for Solvent-Free			
Selective Oxidation			
of Ethylbenzene to		2020	ChemistrySelect [IF-
Acetophenone	L Kalita and L Saikia	2020	2.1]
Pd-NiO-Y/CNT			
Nanofoam: A			
Zeolite-Carbon			
Nanotube Conjugal	M Sharma, B Das, M J		
Exhibiting High	Baruah, PK		Chemical
Durability in	Bhattacharyya, L		Communications [IF-
Methanol Oxidation	Saikia and K K Bania	2020	6.164]
Sun Light Assisted			
Degradation of			
Pollutant dye in			
water by WO ₃ @g-			
C_3N_4	S Borthakur, L Kalita, P		
Nanocomposite	Basyach, K Sonowal and L		New Journal of
Catalyst	Saikia	2020	Chemistry [IF- 3. 6]
Catalyst Few-layer MoS ₂	Saikia A Mukherji, L Saikia , R	2020 2019	Chemistry [IF- 3. 6] Chemical Engineering
•			·
Few-layer MoS ₂	A Mukherji, L Saikia , R		Chemical Engineering
Few-layer MoS ₂ wrapped MnCO ₃ on	A Mukherji, L Saikia , R		Chemical Engineering
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A	A Mukherji, L Saikia , R		Chemical Engineering
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally	A Mukherji, L Saikia , R		Chemical Engineering
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally grown hybrid	A Mukherji, L Saikia , R		Chemical Engineering
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally grown hybrid negative electrode	A Mukherji, L Saikia , R		Chemical Engineering
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally grown hybrid negative electrode for electrochemical	A Mukherji, L Saikia , R		Chemical Engineering
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally grown hybrid negative electrode for electrochemical energy storage	A Mukherji, L Saikia , R Srivastava	2019	Chemical Engineering Journal [IF- 13.273]
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally grown hybrid negative electrode for electrochemical energy storage Separation of	A Mukherji, L Saikia , R Srivastava M Gogoi, P Boruah, P	2019	Chemical Engineering Journal [IF- 13.273] Mineral Engineering
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally grown hybrid negative electrode for electrochemical energy storage Separation of ultrafine	A Mukherji, L Saikia , R Srivastava M Gogoi, P Boruah, P	2019	Chemical Engineering Journal [IF- 13.273] Mineral Engineering
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally grown hybrid negative electrode for electrochemical energy storage Separation of ultrafine chalcogenide	A Mukherji, L Saikia , R Srivastava M Gogoi, P Boruah, P	2019	Chemical Engineering Journal [IF- 13.273] Mineral Engineering
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally grown hybrid negative electrode for electrochemical energy storage Separation of ultrafine chalcogenide particles using	A Mukherji, L Saikia , R Srivastava M Gogoi, P Boruah, P	2019	Chemical Engineering Journal [IF- 13.273] Mineral Engineering
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally grown hybrid negative electrode for electrochemical energy storage Separation of ultrafine chalcogenide particles using Fe ₃ O ₄ magnetic	A Mukherji, L Saikia , R Srivastava M Gogoi, P Boruah, P	2019	Chemical Engineering Journal [IF- 13.273] Mineral Engineering
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally grown hybrid negative electrode for electrochemical energy storage Separation of ultrafine chalcogenide particles using Fe ₃ O ₄ magnetic nanoparticles and ligands with metal	A Mukherji, L Saikia , R Srivastava M Gogoi, P Boruah, P	2019	Chemical Engineering Journal [IF- 13.273] Mineral Engineering
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally grown hybrid negative electrode for electrochemical energy storage Separation of ultrafine chalcogenide particles using Fe ₃ O ₄ magnetic nanoparticles and ligands with metal selectivity	A Mukherji, L Saikia , R Srivastava M Gogoi, P Boruah, P Sengupta, L Saikia	2019	Chemical Engineering Journal [IF- 13.273] Mineral Engineering
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally grown hybrid negative electrode for electrochemical energy storage Separation of ultrafine chalcogenide particles using Fe ₃ O ₄ magnetic nanoparticles and ligands with metal selectivity ZnFe ₂ O ₄ @g-C ₃ N ₄	A Mukherji, L Saikia , R Srivastava M Gogoi, P Boruah, P	2019	Chemical Engineering Journal [IF- 13.273] Mineral Engineering [IF- 4.765]
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally grown hybrid negative electrode for electrochemical energy storage Separation of ultrafine chalcogenide particles using Fe ₃ O ₄ magnetic nanoparticles and ligands with metal selectivity ZnFe ₂ O ₄ @g-C ₃ N ₄ nanocomposites:	A Mukherji, L Saikia , R Srivastava M Gogoi, P Boruah, P Sengupta, L Saikia	2019	Chemical Engineering Journal [IF- 13.273] Mineral Engineering [IF- 4.765] Journal of Environmental
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally grown hybrid negative electrode for electrochemical energy storage Separation of ultrafine chalcogenide particles using Fe ₃ O ₄ magnetic nanoparticles and ligands with metal selectivity ZnFe ₂ O ₄ @g-C ₃ N ₄ nanocomposites: An efficient catalyst	A Mukherji, L Saikia , R Srivastava M Gogoi, P Boruah, P Sengupta, L Saikia	2019	Chemical Engineering Journal [IF- 13.273] Mineral Engineering [IF- 4.765] Journal of Environmental Chemical Engineering
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally grown hybrid negative electrode for electrochemical energy storage Separation of ultrafine chalcogenide particles using Fe ₃ O ₄ magnetic nanoparticles and ligands with metal selectivity ZnFe ₂ O ₄ @g-C ₃ N ₄ nanocomposites: An efficient catalyst for Fenton-like	A Mukherji, L Saikia , R Srivastava M Gogoi, P Boruah, P Sengupta, L Saikia	2019	Chemical Engineering Journal [IF- 13.273] Mineral Engineering [IF- 4.765] Journal of Environmental
Few-layer MoS ₂ wrapped MnCO ₃ on graphite paper: A hydrothermally grown hybrid negative electrode for electrochemical energy storage Separation of ultrafine chalcogenide particles using Fe ₃ O ₄ magnetic nanoparticles and ligands with metal selectivity ZnFe ₂ O ₄ @g-C ₃ N ₄ nanocomposites: An efficient catalyst	A Mukherji, L Saikia , R Srivastava M Gogoi, P Boruah, P Sengupta, L Saikia	2019	Chemical Engineering Journal [IF- 13.273] Mineral Engineering [IF- 4.765] Journal of Environmental Chemical Engineering

pollutant			
Rhodamine B			
Selective	CD Valita DD Carres le DV	2019	New Journal of
	GD Kalita, PP Sarmah, PK	2019	
hydrogenation of	Saikia, L Saikia , P Das		Chemistry [IF- 3.6]
nitroarenes to			
amines by ligand-			
assisted Pd			
nanoparticles:			
influence of donor			
ligands on catalytic			
activity			
ZnO nanoparticles	D Bhuyan, M Saikia, L	2018	Microporous and
embedded in SBA-	Saikia		Mesoporous Material
15 as an efficient			[IF- 5.455]
heterogeneous			
catalyst for the			
synthesis of			
dihydropyrimidinon			
es via Biginelli			
condensation			
reaction			
Scavenging Pd ²⁺ on	D Bhuyan, L Saikia	2017	ChemistrySelect [IF-
Amine-			2.1]
Functionalized			1
SBA-15: A Facile			
Synthesis of Leach-			
Free Pd0			
Nanocatalyst for			
Base-Free			
Chemoselective			
Transfer			
Hydrogenation of			
Olefins			
(μ-O,O')-nitrito	R Paul, AK Guha, L Saikia,	2017	Journal of Solid State
bridged 3-D	SJ Bora	2017	Chemistry [IF- 3.498]
coordination	Si Bola		Chemistry [H - 3.476]
frameworks of M ²⁺			
(Mn Co, Zn) with			
mab and jsm			
_			
topology	D Dhuyron V Calverni I	2017	Miorananana
Pd@SBA-15	D Bhuyan, K Selvaraj, L	2017	Microporous and
nanocomposite	Saikia		Mesoporous Materials
catalyst: Synthesis			[IF- 5.455]
and efficient			
solvent-free			
semihydrogenation			

C 1 1 1 1		T	
of phenylacetylene			
under mild			
conditions			
A green synthesis	PK Saikia, RP Bhattacharjee,	2016	RSC Advances [IF-
of Pd nanoparticles	PP Sarmah, L Saikia , DK		3.36]
supported on	Dutta		
modified			
montmorillonite			
using aqueous			
Ocimum sanctum			
leaf extract: a			
sustainable catalyst			
for			
hydrodechlorination			
of 4-chlorophenol			
Gold nanoparticles	M Saikia, V Kaichev, L	2016	RSC Advances [IF-
supported on	Saikia	2010	3.36]
nanoscale amine-	Suikiu		3.30]
functionalized MIL-			
101(Cr) as a highly			
active catalyst for			
epoxidation of			
styrene Stabilized Fo O	DV Cailria DD Carmah DI	2016	Croon Chamiatay III
Stabilized Fe ₃ O ₄	PK Saikia, PP Sarmah, BJ	2010	Green Chemistry [IF -
	Danala I Callela I/ Callela		0.4051
magnetic	Borah, L Saikia , K Saikia,		9.405]
nanoparticles into	Borah, L Saikia , K Saikia, DK Dutta		9.405]
nanoparticles into nanopores of			9.405]
nanoparticles into nanopores of modified			9.405]
nanoparticles into nanopores of modified montmorillonite			9.405]
nanoparticles into nanopores of modified montmorillonite clay: a highly			9.405]
nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for			9.405]
nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for the Baeyer–Villiger			9.405]
nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for the Baeyer–Villiger oxidation under			9.405]
nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for the Baeyer–Villiger oxidation under solvent free			9.405]
nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for the Baeyer–Villiger oxidation under solvent free conditions	DK Dutta		
nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for the Baeyer–Villiger oxidation under solvent free conditions Functionalized		2016	Journal of Molecular
nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for the Baeyer–Villiger oxidation under solvent free conditions	DK Dutta	2016	
nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for the Baeyer–Villiger oxidation under solvent free conditions Functionalized	DK Dutta PK Saikia, PP Sarmah, BJ	2016	Journal of Molecular
nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for the Baeyer–Villiger oxidation under solvent free conditions Functionalized montmorillonite	DK Dutta PK Saikia, PP Sarmah, BJ	2016	Journal of Molecular Catalysis A: Chemical
nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for the Baeyer–Villiger oxidation under solvent free conditions Functionalized montmorillonite supported rhodium	DK Dutta PK Saikia, PP Sarmah, BJ	2016	Journal of Molecular Catalysis A: Chemical
nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for the Baeyer–Villiger oxidation under solvent free conditions Functionalized montmorillonite supported rhodium complexes:	DK Dutta PK Saikia, PP Sarmah, BJ	2016	Journal of Molecular Catalysis A: Chemical
nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for the Baeyer–Villiger oxidation under solvent free conditions Functionalized montmorillonite supported rhodium complexes: Efficient catalysts	DK Dutta PK Saikia, PP Sarmah, BJ	2016	Journal of Molecular Catalysis A: Chemical
nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for the Baeyer–Villiger oxidation under solvent free conditions Functionalized montmorillonite supported rhodium complexes: Efficient catalysts for carbonylation of methanol	PK Saikia, PP Sarmah, BJ Borah, L Saikia , DK Dutta	2016	Journal of Molecular Catalysis A: Chemical
nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for the Baeyer–Villiger oxidation under solvent free conditions Functionalized montmorillonite supported rhodium complexes: Efficient catalysts for carbonylation of methanol Aromatic ring	PK Saikia, PP Sarmah, BJ Borah, L Saikia , DK Dutta P Das, PP Sarmah, BJ		Journal of Molecular Catalysis A: Chemical [IF- 5.062]
nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for the Baeyer–Villiger oxidation under solvent free conditions Functionalized montmorillonite supported rhodium complexes: Efficient catalysts for carbonylation of methanol Aromatic ring hydrogenation	PK Saikia, PP Sarmah, BJ Borah, L Saikia , DK Dutta		Journal of Molecular Catalysis A: Chemical [IF- 5.062]
nanoparticles into nanopores of modified montmorillonite clay: a highly efficient catalyst for the Baeyer–Villiger oxidation under solvent free conditions Functionalized montmorillonite supported rhodium complexes: Efficient catalysts for carbonylation of methanol Aromatic ring	PK Saikia, PP Sarmah, BJ Borah, L Saikia , DK Dutta P Das, PP Sarmah, BJ		Journal of Molecular Catalysis A: Chemical [IF- 5.062]

		1	T
montmorillonite supported Ir(0)-			
nanoparticle			
composites under			
solvent free			
conditions			
Sulfonic acid-	M Saikia, L Saikia	2016	RSC Advances [IF-
functionalized MIL-			3.36]
101(Cr) as a highly			
efficient			
heterogeneous			
catalyst for one-pot			
synthesis of 2-			
amino-4H-			
chromenes in			
aqueous medium			
Palladium	M Saikia, L Saikia	2016	RSC Advances [IF-
nanoparticles			3.36]
immobilized on an			
amine			
functionalized MIL-			
101(Cr) as a highly			
active catalyst for			
oxidative amination			
of aldehydes			
Effects of	BJ Baruah, MN Bora, L	2016	Journal of Materials:
deposition	Saikia, D Saikia, P Phukan,		Materials for
temperature on	KC Sarma		Electronics [IF-
structural, optical			2.195]
and electrical			
properties of TEA			
complexed			
nanocrystalline			
films of PbS			
prepared from lead			
acetate with			
reduced			
concentration			

❖ Detail of patents. Granted patent No. : 2

S.	Patent Title	Name of	Patent No.	Award	Agency/C	Status
No		Applicant(s)		Date	ountry	
1	A process for the	Darbha	20083525	2013.06.13	Australia	Granted
	preparation of	Srinivas, Paul	36			

	primary alkyl glycerol ethers useful as biofuel additive from glycerol	Ratnasamy and Lakshi Saikia				
2	A process for the preparation of primary alkyl glycerol ethers useful as biofuel additive from glycerol	Darbha Srinivas, Paul Ratnasamy and Lakshi Saikia	2,718,474	2014.04.24	Canada	Granted

❖ Invited Talks: 17

❖ Books: 1, Book Chapter: 3

❖ Project as PI: 3(DST), 1 (DBT), 3 (CSIR), 1 (CPCB)

As Co-PI: 4

Awards/ honour/ recognition:.

- Best Oral Presentation by PhD student Miss Sukanya Borthakur during International Conference ESTEC-2020 held CSIR-NEIST, Jorhat during 18-21 February, 2020.
- Best Poster Presentation by Miss Karanika Sonowal in International Conference FAST 2.0 organized by CIT, Kokrajhar during 20-21 October, 2020.
- Best Poster Presentation by Miss Lisamoni Kalita during International Conference ESTEC-2020 held CSIR-NEIST, Jorhat during 18-21 February, 2020.
- Best Oral Presentation by PhD student Miss Sukanya Borthakur during SUCHEMYUVA held at CSIR-IICT, Hyderabad in 2019.
- Best Oral Presentation in International Conference APCAT-7 held in Hotel Lalit, Mumbai during 17-20 January, 2017
- A paper entitled "Facile synthesis of Fe₃O₄ nanoparticles on metal organic framework MIL-101(Cr): characterization and catalytic activity" by M Saikia, D Bhuyan and L Saikia published in New Journal of Chemistry, 39(1), 64-67, (2015) is considered to appear as Front Cover Page article in January, 2015.
- A paper published in **Journal of Catalysis**, **252**, **148-160** (**2007**) was **Top 25 Hottest Article** in January-March 2008.

- A paper Macromolecular Symposia, 287, 80-88, (2010) was one of the Most access article in 2011 of this journal.
- MRSI prize for the Best Poster Paper entitled "Green synthesis of Silver Nanoparticles using Ocimum sanctum Leaf Extract: in vitro Antimicrobial Activity Against Gram-Negative Bacteria" at the MRSI National Symposium on Advanced Materials for Sustainable Applications and 27th AGM of MRSI held at Jorhat during February 18-20, 2016
- **Best Poster Award:** National Science Day 2008 observed in National Chemical Laboratory, Pune.

Work Experience

- ❖ A couple projects are completed with self as Principal Investigator including one **International Collaborative project** under DST-RFBR scheme with Boreskov Institute of Catalysis, Russia and 3 (three) projects completed as PI in CSIR XII Five year plan project. One project is implemented for creation of facilities like FESEM-EDS, HRTEM, HRMS, AFM with self as Co-PI at CSIR-NEIST.
- ❖ 4 Students are awarded Ph.D and currently guiding 4 (four) Ph.D. students are pursuing Ph.D.
- Research Associate/ PDF/ Women Scientist: 3
- ❖ MSc/ MTech/ BSc trainee: 16
- * Editorial Board member of "Modern Research in Catalysis" published by Scientific Research Publishers, USA
- ❖ Reviewer of journals like ACS-Applied Materials & Interface, Applied Catalysis B: Environmental, Journal of Catalysis, Chemical Communications, RSC Advances, Microporous and Mesoporous Materials, Applied Catalysis A: General, Journal of Photochemistry and Photobiology: Chemistry, ChemistrySelect, Chemosphere, Journal of Hazardous Materials, Journal of Environmental Chemical Engineering, Catalysis Communications etc.