

Contents lists available at ScienceDirect

South African Journal of Botany

journal homepage: www.elsevier.com/locate/sajb

Review

An insight on the immunomodulatory potential of wood oil of *Aquilaria malaccensis* Lam. with an emphasis on related phytomedicine, biomarkers, pharmacology, and toxicity

Prasanna Sarmah^{a,b}, Bikas Das^{a,b}, Jadumoni Saikia^{a,b}, Parthapratim Konwar^{a,b}, Kalpataru Dutta Mudoi^a, Siddhartha Proteem Saikia^{a,b}, Dipanwita Banik^{a,b,*}

^a Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, Assam, India ^b AcSIR - Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India

ARTICLE INFO

Article History: Received 24 May 2022 Revised 14 September 2022 Accepted 12 October 2022 Available online xxx

Edited by A. Ndhlala Keywords: Agarwood Anti-inflammatory Antiiabetic gene expression Caryophyllene oxide SARS-CoV2

ABSTRACT

Critically endangered Aguilaria malaccensis Lam, is known for highly expensive agarwood with unique aroma. Agarwood has been used as a phytomedicine in chronic degenerative neurological disorders, paralysis, rheumatism, asthma, and others. Its production is dependent naturally or artificially on interaction of endophytic fungi, and by nailing, drilling, and microbial inoculation respectively. The majorly produced biomarkers of terpenes, fatty acids, alkanes, chromones, and flavonoids exhibited several biological activities in congruence to their ethnomedicinal claims. During the pandemic, several in-silico, studies showed the potential of a few sesquiterpene hydrocarbons against covid-19. The review aimed to deliver a comprehensive outline of the immunomodulatory potential of agarwood oil with allied traditional medicinal use, biomarkers, pharmacological evaluation, toxicity, and mechanistic action. The review eventually showed the agarwood oil, extracts, and major biomarkers viz., aromadendrene II, valencene, phytol, octacosane, caryophyllene oxide, β -caryophyllene, hinesol, agarospirol, with immunomodulatory, anti-inflammatory, and allied neural, antidiabetic, antimicrobial activity, toxicity, along with molecular target binding potential against 3CLpro, RDRP, Mpro, PLpro, Spike protein S1 of SARS-CoV2 through in-vitro, in-vivo, in silico studies and limited human clinical trials. The expression of HMGR, ASS, ADXPS, ADXPR, FPS, and WRKY genes of sesquiterpenoid biosynthetic pathways were upregulated for signature aroma and immunomodulatory markers viz., δ -guaiene, dodecane, tetracosane, agarospirol, farnesol, and geranylgeraniol acetate as a defensive response. The review would ignite future research on potential immunomodulatory markers viz., caryophyllene oxide, octacosane, heneicosane, agarospirol, n-hexadecanoic acid, α -eudesmol, α -santalol and inoculum guided *in*vitro agarwood production restoring the prized aroma, therapeutic efficacy, and wild population.

© 2022 SAAB. Published by Elsevier B.V. All rights reserved.

tion/ionization time of flight mass spectrometry; MAO, Monoamine oxidase; MCF-7, Michigan Cancer Foundation-7; MDA, Malondialdehyde; MEP, Methylerythritol 4phosphate; MIC, Minimum inhibitory concentration; MON, Monocyte; MTT, (3-[4, 5dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide); MYC, Myelocytomatosis; MYB, Myloblastosis; nNOS, Neuronal nitric oxide; NO, Nitric oxide; OF, Open field; Pb ($C_2H_3O_2$), Lead acetate; PBMCS, Peripheral blood mononuclear cell; Pl3K, Phosphoinositide 3-kinase; PMA, Phorbol 12 myristate 13-acetate; PPAR γ , Peroxisome proliferator-activated receptor gamma; RAW 264.7 cell, Murine macrophage cell line; RBL-2H3, Rat basophilic Leukemia cell line; SCFE, Slipped capital femoral epiphysis; SD, Sprague Dawley rats; SCPT, Serum glutamic pyruvic transaminase; STZ, Streptozotocin; TP, Total protein; TNF α , Tumor necrosis factor alpha; WST, Water-soluble tetrazolium salt; ZoI, Zone of inhibition * corresponding author at: Agrotechnology and Rural Development Division, CSIR-

Lipopolysaccharide; LYM, Lymphocyte; MALDI-TOF-MS, Matrix assisted laser desorp-

North East Institute of Science & Technology, Jorhat 785006, Assam, India.

E-mail addresses: banikdipanwita@yahoo.com, dipanwitabanik@neist.res.in (D. Banik).

List of abbreviations: 3CLpro, 3-chymotrypsin-like protease; 5-HT, 5-hydroxytryptamin (serotonin); AACT, Acetyl CoA C-acetyl transferase; AchE, Acetylcholinesterase; ACTH, Adrenocorticotropic hormone; ADH, Alcohol dehydrogenase; ALB, Albumin; ALDH, Aldehyde dehydrogenase; ALP, Alkaline phosphatase; ALT, Alanine transaminase; AST, Aspartate aminotransferase; BALB/c, Bagg albino mouse; Chrnd, Cholinergic receptor nicotinic delta subunit; CMC, Carboxymethylcellulose; CNS, Central nervous system; CORT, Corticosterone; COX-2, Cyclooxygenase 2; CRF, Corticotropin releasing factor; CRFR, Corticotropin-releasing factor receptor; Crhr2, Corticotropin-releasing hormone receptor; CYP2E1, Cytochrome P450 2E1; DAVID, Database for annotation visualization and integrated discovery; DDY, Deutschland Denken and Yoken; DLA, Dalton Lymphoma ascites; DMSO, Dimethyl sulfoxide; EAC, Ehrlich-Lettre ascites carcinoma; EPM, Elevated plus maze; FMLF/CB, N-formyl-L-methionyl-L-leucyl-Lphenylalanine cytochalasin B; GLU, Glucanase; GPT, Glutamic pyruvic transaminase; GRN, Granulocyte; GSH, Glutathione; GST, Glutathione-S-transferase; HBMMC, Human bone marrow mesenchymal cell; HCT 116, Human colon cancer cell; HFFD, High fructose fat diet; HPA, Hypothalamic-pituitary-adrenal axis; HRBC, Human red blood cell; ICR, Institute of Cancer Research; IDX, Insulin, dexamethasone and 3-isobutyl-1-methylxanthine; IL, Interleukin; KEGG, Kyoto encyclopedia of genes and genomes; LDE, Light dark exploration; LDH, Lactate dehydrogenase; LOX, Lipoxygenase; LPS,

1. Introduction

Uniquely aromatic agarwood is produced by Aquilaria malaccensis Lam., of the family Thymelaeaceae Juss. The species is known as Gaharu, Agor or Aguru. Agarwood is one of the costliest resinous substances around the globe. It is produced in the heart wood as a response to fungal and other microbial infections in A. malaccensis and its allied species including A. baillonii Pierre ex Lecomte, A. beccariana Tiegh., A. crassna Pierre ex Lecomte, A. filaria (Oken) Merr., A. hirta Ridl., A. khasiana Hallier f., A. microcarpa Baill., A. rostrata Ridl., A. rugosa K.-Le-Cong & Kessler, A. sinensis (Lour.) Spreng., A. subintegra Ding Hou and A. yunnanensis S.C. Huang (Lee and Mohamed, 2016; Sangareswari et al., 2016). From the prehistoric ages, agarwood was greatly valued in the international market in ancient Egypt, Greece, Rome, China, and India (Groom, 1981). In the traditional system of medicines, it was referred against mostly degenerative ailments viz., psychoneurosis, epilepsy, rheumatism, inflammation, sexual debility, weakness, bronchitis, and as an immunosuppressant (TKDL, 2001). The current price of per gram Agarwood oil is approximately Rs 32,500.00 (https://m.indiamart.com/prodde). According to the Industry Analysis and Forecast, the global market for Agarwood oil is expected to reach about 0.362 billion US Dollars by 2026 (www.maxi mizemarketresearch.com). Apart from high-value agarwood, A. malaccensis has several allied industrial and environmental applications viz., agar tea from air-dried leaves in SE Asia (Batubara et al., 2016; Adam et al., 2017; Kuo et al. 2020), medicated liquor from agarwood from Malaysia (Asia-Taipei and Asia, 2005), biodiesel and bioenergy (Limhengha et al., 2021; Tamuly, 2021) and as an agent of phytoremediation for absorption of heavy metals such as Cd and Cu (Keeren et al., 2013; Hamzah and Atikah, 2018). For its high demand in perfumery industries, commercial benefits, and in traditional medicines, A. malaccensis had been overexploited in the wild and was enlisted as 'critically endangered' (Harvey-Brown, 2018). The micropropagation and mass multiplication techniques were recommended to conserve this endangered elite species (Siah et al., 2016).

The strong perfumery odor of agarwood is markedly induced by terpene derivatives viz., α -agarofuran, β -caryophyllene, caryophyllene oxide, and others, where its demand relies upon its aroma quality (Naef, 2011). Several genes viz., WRKY, MYC, and MYB exhibited a significant role in the biosynthesis of terpene derivatives (Islam et al., 2020). Moreover, β -caryophyllene, a sesquiterpene hydrocarbon biomarker of agar oil exhibited great potential against covid-19 by strongly inhibiting the protease of the nCoV virus (Jahan et al., 2021). Despite its great economic potential and traditional uses, earlier reviews and publications concentrated mainly on phytochemistry and specific pharmacological properties of agarwood without comprehensive information on immunomodulatory activity, and biomarker-guided guality agarwood production and gene expression (Naef, 2011; Ismail et al., 2015; Eissa et al., 2018; Eissa et al., 2020). Therefore, this study aimed to impart an updated overview of the immunomodulatory potential of A. malaccensis with an emphasis on allied phytomedicines, key biomarkers, pharmacological evaluation, toxicity, and mechanistic action. Approximately 157 references including the earliest from 1783 on species identity to delve deeper into immunomodulatory potential against SARS-CoV2 were reviewed from several online databases and web portals, published literature, and Ph.D. thesis (Adam, 2017) till April 2022. The search keywords used were viz., Aquilaria malaccensis taxonomy, biomarker, immunomodulatory, anti-inflammatory, antidiabetic, neurological, antimicrobial, toxicity, clinical trial, SARS-CoV2, gene expression, agarwood formation, biosynthetic pathway, fungal association, and microbial inoculum. Taxonomic identity and scientific names were verified through http://www. plantsoftheworldonline.org/. PubChem IDs of major biomarkers were compiled and redrawn by ChemDraw (Barman et al., 2021).

2. Botanical note

The genus Aquilaria Lam, belongs to the tribe Aquilarieae (RBr.) Baill. under the subfamily Thymelaeoideae Burnett, family Thymelaeaceae (Herber, 2003). Apart from Aquilaria, agarwood is also produced by the other genera such as Phaleria Jack, Enkleia Griff., Wikstroemia Spreng., Gyrinops Gaertn., Aetoxylon (Airy Shaw) Airy Shaw and Gonystylus Teijsm. & Binn. (Lamarck and Poiret, 1783; Herber, 2003; Eurlings and Gravendeel, 2005; Lee et al., 2018). In international trade, Aquilaria along with Gyrinops and Gonystylus were classified under Appendix II of CITES (CITES, 1994). As species substitution alters the quality of aroma and therapeutic value of agarwood oil, the botanical differences among the allied species and the genera were thoroughly reviewed viz., Aquilaria khasiana Hallier f. differs from A. malaccensis in having villous pedicel and tube, ovate-triangular tube lobes, obovate to oblanceolate fruits and ovoid-ellipsoid seeds whereas A. malaccensis has glabrous pedicel and tube, ovate-oblong tube lobes, obovate capsular fruits and ovoid-globose seeds (Hou,1964; Eurlings and Gravendeel, 2005; Mir et al., 2017). The differences among Aquilaria and allied genera were critically reviewed. Aquilaria differs from Enkleia being a tree while Enkleia is a liana. Aquilaria has alternate leaves whereas Wikstroemia has opposite leaves. Aquilaria has number of stamens (8-12) twice of calvx lobes but Gyrinops has equal numbers of stamens (5) and calyx lobes. Aquilaria has loculicidal capsule as fruit but *Phaleria* has drupes. Aquilaria has 1-2 chambered fruits but Aetoxylon has 3 or more chambered fruits. Aquilaria has number of petaloid appendages double of calyx lobes but petaloid appendages not doubled in Gonystylus (Quisumbing, 1946; Eurlings and Gravendeel, 2005).

Initially Aquilaria agallocha Roxb. was treated as a separate species from A. malaccensis Hooker (1886) distinguished Aquilaria agallocha from A. malaccensis Lam. in having 3.8-5 cm oblanceolate-acuminate glabrous to coriaceous fruits compared to ca. 3.8 cm broadly obovoid thick woody fruits of A. malaccensis. As the morphology of both the species were conspecific, D. Hou (1960; 1964) reduced Aquilaria agallocha as a synonym under A. malaccensis. Aquilaria malaccensis Lam. is a tree with glabrous elliptic-oblong to lanceolate leaf lamina acuminate at the apex. Inflorescences are umbels at terminal or axillary position. Flowers are green or greenish yellow with a campanulate calyx tube. Nectarial scales or petaloid appendages are present. Stamens are twice in a number of calyx lobes. The ovary is pubescent and stigma is capitate. Fruits are obovoid or obovoid-oblong capsules (Hou, 1960; 1964). It is widely distributed in Bhutan to SE Asia, mostly up to 1000 m (CITES, 2003).

3. Phytomedicine

Different plant parts of Aquilaria malaccensis had been used by various tribal communities in Asia. It had been used as a immunosuppressant, in rheumatism, and inflammation in Ayurveda; stomach problem, sexual debility, epilepsy, psychoneurosis, cardiac problem, weakness in Unani; bronchitis and others in Siddha. In folklore, it was mostly reported in the treatment of digestive, respiratory, metabolic, neurological disorders, snake bites, and others by the tribes such as Bodo-Kachari, Nyishi, Ao naga, Chakma, Khasia, Phom, Chothe, Lotha naga from North East India and Bangladesh (Changkija, 1994; TKDL, 2001; Jamir et al., 2010; Jamir and Tsurho, 2016; Esha et al., 2012; Uddin and Mukul, 2012; Basumatary et al., 2014; Balkrishna et al., 2021). Even though the distribution of the species was reported from Bangladesh to Malaysia, ethnic use of the species was reported in mouth infection and cancer by tribal communities of Morocco (Bourhia et.al 2019; Merzouki et al. 2000; Table 1).

A few phytomedicinal uses of Aquilaria malaccensis Lam.

Phytogeographical region	Local name	Tribe /Ethnic group/Region	Parts used	Health ailments/other uses	Reference
NE INDIA	Agar, Agaru, Sanchi	Assamese, Assam, India	Bark, leaves, stem, oil	ltchy throat, leprosy, holy scripts	Nath and Saikia (2002); Saikia et al., (2006); Sarma et al., (2015)
	Agar	Bodo-Kachari, Assam, India	Bark	Stomach pain, snake bite, vomiting	Basumatary et al., (2014)
	Thing-rai	Nyishi	-	Constipation, diarrhea, vom- iting, snake bite	Balkrishna et al., (2021)
	Tssungza, Agor	Lotha naga, Phom, Nagaland, India	Whole plant, wood, resin	Asthma, diarrhea, dysentery, rheumatism, paralysis	Jamir et al. (2010); Jamir and Tsurho (2016)
	Agor, Machi	Chothe, Thadou (Kuki), Vai- phei, Chiru, Ireng (Rong- mei), Meitei, Manipur, India	Bark	Incense stick, perfumery, diarrhea	Sanglakpam et al., (2012); Khan et al., (2015)
	Thingrai	Mizo, Mizoram, India	Resinous wood	Antiasthmatic, antirheuma- tism, diuretic, leukoderma	Rai and Lalramnghinglova (2010)
	Agar	Tripuri, Tripura, India	Bark, twig	Burial, dead soul purifica- tion, rheumatic pain	Majumdar and Datta (2009); Debnath et al., (2016)
	Agor	Laleng (Patra)	-	Sacred plant	Partha (2014)
	Sungza sung	Aonaga	Oil	Stomach disorders	Changkija (1994)
South India	Agaru	Adilabad, Telangana, India	Bark	Coldness	Gurrapu and Mamidala (2016)
	Akil, Karakil	Malayaraya, Kerala	Resinous wood, oil	Dermatological ailment, blood purifier	Sudeesh (2012)
South East Asia	Agar, Akod, Agor	Khasia, Sylhet, Chakma, Madhupur forest Reserve, Garo & Nongaro, Tangail, Bangladesh	Leaves, resin/ resinous oil, wood	Vomiting, joint/body/ rheu- matic ache, cough, diar- rhea, fever, skin disease, ulcer, jaundice	Rahmatullah et al., (2011); Esha et al., (2012); Uddin and Mukul (2012); Islam et al., (2014)
	Agaru	Lower Khengkha, Bhutan	Wood	Cardiac, neurological disorder	Wangchuk et al., (2017)
	Kagas / Gaharu/ Garu/ Alim	Batak toba, Talang mamak, Orang melayu, Indonesia	Leaves, trunk, bark, sap wood	Morning sickness, joint/ abdominal ache; construc- tion, firewood	Grosvenor et al., (1995); Wiryono et al., (2017); Silalahi et al., (2019); Susandarini et al., (2021)
	Johuk /Gaharu/ Karas	Aborigines, Jahai, the Malay peninsula	Leaves	Asthma, bathing	Nurraihana et al., (2016); Ayuni et al., (2018)
Africa	Ighris/ Aoud Laqmari	Casablanca-Morocco, Ksar- lakbir, Morocco, Africa	Bark, trunk	Cancer, mouth infection	Merzouki et al., (2000); Bourhia et al., (2019)

4. Biomarkers

Numerous research and review papers were published on phytochemicals of Aquilaria malaccensis (Naef, 2011; Ismail et al., 2015; Peng et al., 2015; Samadi et al. 2017; Wang et al., 2018a; Eissa et al., 2020). Strongly aromatic yellowish agarwood oil was reportedly produced approximately 0.05–0.2% in the infected trees (Tajuddin and Yusoff, 2010; Samadi et al., 2017; Samadi et al., 2020). The approximated yield varies in healthy (0.15%), and infected trees viz., naturally infected (0.8%), and artificially infected (0.4%), respectively. The major biomarkers and content varied with the severity of the infection and nearly 25% of aromadendrene II (10), 18% of valencene (43), 9% of calarene (54), and 9% 1,(5)-6-guaiadiene (7) were reported in oil from highly infected trees, followed by 17% t-cadinol (49) in moderately infected trees and 39% 1-methyl-1-caprolactone (100), 32% 7-(Hydroxymethyl) 2-methoxy xanthone (148) and 2% aromadendrene II (10) in less infected trees (Benedict, 2009; Bhuiyan et al., 2009; Jayachandran et al., 2014). However, significant biomarkers reported were viz., terpenes (1-65), fatty acids and amide (66-71), aldehydes (72-80), alcohols and phenols (81-90), acids and esters (91-103), alkane hydrocarbons (104-118), cyclic hydrocarbons (119-123), flavonoids, flavanols, chromones and xanthones (124-152), and others (153-159) [Fig. 1, Table S1]. The most prevalent terpenes reported were sesquiterpenes (56–93%) comprising oxygenated sesquiterpenes (30-36%) and sesquiterpene hydrocarbons (15-20%), followed by monoterpenes, diterpenoids, triterpenoids, sesquiterpene alcohol, sterols, and alkaloids, including noteworthy other biomarkers viz., caryophyllene oxide (25) (11%), β -caryophyllene (18) (6–8%), α -eudesmol (46) (2–3%) and others (Tajuddin and Yusoff, 2010; Jayachandran et al., 2014; Peng et al., 2015). Major fatty acids

reported were saturated fatty acid viz., palmitic acid (68) (26-28%), fatty aldehyde like pentadecanal (74) (31–32%), monosaturated fatty aldehyde like tetradecanal (78) (5–7%), and others. Notable alcohols identified in A. malaccensis are viz., cis-3-hexanol (85), 1-octanol (82), guaiacol (87), and others (Samadi et al., 2017; Nasution et al., 2020). Among the acids and esters, notable reported biomarkers were mono and dicarboxylic acids and esters comprising trichloroacetic acid (91), succinic acid (95), benzyl salicyclate (99), glucopyranosyl sinapate (102), and others (Samadi et al., 2017; Eissa et al., 2020; Hashim et al., 2020). Significant alkane hydrocarbons reported were viz., nonacosane (112), octacosane (113); cyclic hydrocarbons viz., azulene (119), and quindoline (123) (Bhuiyan et al., 2009; Jayachandran et al., 2014; Samadi et al., 2017). Several flavonoids, flavanols, chromones, and xanthones were commonly reported viz., aquisiflavoside (126), luteolin (134), 8methoxy-2-(2 phenylethyl) chromen-4-one (143), 2-(2-Phenylethyl) chromone (144) (27%), homomangiferin (149), and mangiferin (150); and as benzophenone, aquilarisinin (151) (Eissa et al., 2020; Nasution et al., 2020; Wirjosentono et al., 2020; Kao et al., 2021). In the majority of the publications, the markers were identified by LC-MS, Liguid Chromatography-O-TOF-MS, SPME-GC-FID-MS, and GC-MS/TLC without being further characterized by NMR (Peng et al., 2015; Eissa et al., 2020; Wirjosentono et al., 2020).

5. Pharmacology

Experimental data of *in vitro*, *in vivo* studies, and clinical trials of the solvent extracts, essential oil, and biomarkers were critically reviewed for immunomodulatory and majorly allied biological activities known at present. The reviewed studies were compiled and presented with approximate values for easy understanding.

Fig. 1. Some biomarkers of Aquilaria malaccensis: A. Terpenes, B. Fatty acids and amide, C. Aldehydes, D. Alcohol and phenols, E. Acids and esters, F. Alkane hydrocarbon, G. Cyclic hydrocarbon, H. Flavonoids, flavonois, chromones, xanthones.

5.1. Anti-inflammatory and immunomodulatory activity

In vivo and in vitro studies with the best findings of anti-inflammatory and immunomodulatory activity were compiled (Table 2). In 30 days multiple in vivo studies among 25 numbers 8-10 weeks old female albino rats of 200-270 g, methanolic bark extract of Aquilaria malaccensis decreased the WBC (<4.1), LYM (<4.0), GRN (<0.4), MON (<0.5), heart lipid peroxidation marker MDA (< 1 μ mol/mg), and body weight gain (<0.15 g/day) in methanolic extract and HFFD treated group from only HFFD treated group WBC (< 5), LYM (<4.1), GRN (<0.55), MON (<0.7), MDA (< 3 μ mol/mg) and body weight gain (< 1.06 g/day) exhibiting immunomodulatory potential. In a similar 15 days study Pb(C₂H₃O₂)₂ 100 mg/kg and Aquilaria powder 10 g/kg b.w. decreased body weight and relative liver weight of experimental rats from 198 g and 3.2 g to 196 g and 2.6 g which were gained by Pb(C₂H₃O₂)₂ treatment compared to control i.e., 291 g and 2.5 g respectively (Derouiche et al., 2019). In another study among 24 male and female Wistar rats of 150-200 g, A. malaccensis wood oil at

100 mg/kg exhibited a reduction in carrageenan-induced paw edema after 3 hours <63% than <69% with diclofenac (10 mg/kg) as antiinflammatory activity (Rahman et al., 2012). In vitro studies with bioactive markers from A. malaccensis such as 1α , 7α -dihydroxy-80xo-4αH,5αH-guaia-9(10),11(13)-dien-12-oate (8), phytol (55), n-hexadecanoic acid (68), phorbol esters (58), essential oil by SCFE inhibited NO synthesis in LPS stimulated RAW 264.7 cells with IC₅₀ <19.0 μ M, concentration-dependent albumin denaturation <71%, elastase release in FMLF/CB induced human neutrophils with IC50 0.8–2.7 μ M, enhanced superoxide in FMLF/CB induced human neutrophils, concentration-dependent protection of HRBC cell membrane in a hypotonic solution than diclofenac and inhibited BSA denaturation by 29-52% (Rahman et al., 2012; Wagh et al., 2017; Eissa et al., 2018; Zainurin et al., 2018; Ma et al., 2021). Most of the in vivo experiments lacked the use of the equal ratio of male and female individuals, and in vitro studies lacked the use of negative control, standard, and reference exhibiting results without the potential of translational use in human therapeutics.

 Table 2

 Anti-inflammatory and immunomodulatory activity of Aquilaria malaccensis Lam.

Study type	Part used	Extract/Compound	Experimental model/set up	Dosages	Control	Activity	Reference
In vivo	Bark	Methanolic [Apige- nin (125), epicate- chin (128), naringenin (136), quercetin (137), kaempferol (132), rutin (139)]	Adult female albino rats (8–10 weeks old), 200–270 g, 25 rats, 5/group	HFFD + MeOH extract (200 mg/ kg/d) for 30 days	Normal diet	Decreased body weight gain in methanol extract and HFFD treated group (<0.15 g/day) than only HFFD group (<1.06 g/day) and control (< 0.54 g/ day) exhibiting immunomod- ulatory potential.	Derouiche et al. 2019
In vivo	Bark	Methanolic [Apige- nin (125), epicate- chin (128), naringenin (136), quercetin (137), kaempferol (132), rutin (139)]	Adult female albino rats (8–10 weeks old), 200–270 g, 25 rats, 5/group	HFFD + MeOH extract (200 mg/ kg/d) for 30 days	Normal diet	Decreased WBC (<4.1), LYM (<4.0), GRN (<0.4) and MON (<0.5) in methanol extract and HFFD treated group than only HFFD treated group viz., WBC (<5), LYM (<4.1), GRN (<0.55) and MON (<0.7) exhibiting immunomodula- tory potential.	Derouiche et al. 2019
In vivo	Bark	Methanolic [Apige- nin (125), epicate- chin (128), naringenin (136), quercetin (137), kaempferol (132), rutin (139)]	Adult female albino rats (8–10 weeks old), 200–270 g, 25 rats, 5/group	HFFD + MeOH extract (200 mg/ kg/d) for 30 days	Normal diet	Decreased heart lipid peroxida- tion marker MDA in methanol extract and HFFD treated group (< 1 µmol/mg) than only HFFD group (< 3 µmol/ mg) exhibiting immomodu- latory potential.	Derouiche et al. 2019
In vivo	Heartwood	Aquilaria malaccen- sis heartwood powder	Wistar female albino rats about 220 g treated with Pb(C ₂ H ₃ O ₂) ₂ 100 mg/kg for 70 days, 25 num- bers in 15 days study	Pb(C ₂ H ₃ O ₂) ₂ 100 mg/kg + Aquilaria powder 10 g/kg body weight	Control without treatment	Decreased body weight from 198 g to 196 g gained by Pb $(C_2H_3O_2)_2$ treatment com- pared to control i.e., 291 g. Decreased relative liver weight from 3.2 g to 2.6 g compared to control 2.5 g.	Samir et al. 2017
In vivo	Heartwood	Aquilaria malaccen- sis heartwood powder	Wistar female albino rats about 220g treated with Pb(C ₂ H ₃ O ₂) ₂ 100 mg/kg for 70 days, 25 num- bers in 15 days study	Pb(C ₂ H ₃ O ₂) ₂ 100 mg/kg + Aquilaria powder 10 g/kg body weight	Control without treatment	Decreased MDA 1.3 μ mol/mg from 2.26 μ mol/mg gained by Pb(C ₂ H ₃ O ₂) ₂ treatment com- pared to control i.e., 1.84 μ mol/mg to restore oxidative stress caused by Pb(C ₂ H ₃ O ₂) ₂ . Increased GSH 0.2 nmol/mg from 0.1 nmol/mg reduced by Pb(C ₂ H ₃ O ₂) ₂ treatment similar to control i.e., 0.2 nmol/mg to restore oxidative stress caused by Pb(C ₂ H ₃ O ₂) ₂ . Increased GST 9.2 nmol/min/mg from 6.3 nmol/min/mg reduced by Pb (C ₂ H ₃ O ₂) ₂ treatment com- pared to control i.e., 14.3 nmol/min/mg to restore oxi- dative stress caused by Pb (C ₂ H ₃ O ₂) ₂ . Decreased Catalase 1.3 UI/mg from 17.6 UI/mg gained by Pb(C ₂ H ₃ O ₂) ₂ treat- ment compared to control i.e., 14 UI/mg to restore oxidative stress caused by Pb(C ₂ H ₃ O ₂) ₂ .	Samir et al. 2017
In vivo	Heartwood	Aquilaria malaccen- sis heartwood powder	Wistar female albino rats about 220g treated with Pb(C ₂ H ₃ O ₂) ₂ 100 mg/kg for 70 days, 25 num- bers in 15 days study	Pb(C ₂ H ₃ O ₂) ₂ 100 mg/kg + Aquilaria powder 10 g/kg body weight	Control without treatment	Decreased SGPT 80.5 U/L from 90.5 U/L gained by Pb (C ₂ H ₃ O ₂) ₂ treatment com- pared to control i.e., 89.5 U/L exhibiting to restore liver injury caused by Pb(C ₂ H ₃ O ₂) ₂ . Liver histopathology of treated animal exhibited to reduce liver damage partially.	Samir et al. 2017
In vivo	Woods	Aquilaria malaccen- sis oil (2.3% w/w)	Wistar male and female rats (150–200 g), Four groups, 6 rats/ group	100 mg/kg	Diclofenac (10 mg/ Kg)	Reduction in Carrageenan induced paw edema after 3 h <63% than diclofenac <69% as anti-inflammatory activity.	Rahman et al. 2012
In vivo	Heart wood	Ethyl acetate extract	30 numbers of 20–25 g of male albino mice and 170–200 g of	50, 100, 200 mg/kg	2% aqueous tween 80	200 mg/kg ethyl acetate extract reduced acetic acid induced writhing numbers 22 com- pared to < 19 treated with	Chitre et al. 2007

Table 2 (Continued)

Study type	Part used	Extract/Compound	Experimental model/set up	Dosages	Control	Activity	Reference
			Wistar rats in 5 groups			Diclofenac 10 mg/kg showing analgesic activity. 200 mg/kg ethyl acetate extract reduced formalin induced licking time for paw <32 min. compared to < 73.4 min. treated with Diclofenac 10 mg/kg showing anti-inflammatory activity. 200 mg/kg ethyl acetate extract enhanced tail flicking time compared to Diclofenac treated with showing anti- inflammatory activity. 200 mg/kg ethyl acetate extract reduced carrageenan injected edema compared to Diclofenac treated showing anti-inflammatory activity.	
In vitro	Wood	n-hexane /EtOAc1α,7α- dihydroxy-8oxo- 4αH,5αH-guaia-9 (10),11(13)-dien- 12-oate (8)	LPS stimulated RAW 264.7 cells by microplate reader		-	Inhibited NO synthesis with IC ₅₀ <19.0 μ M.	Ma et al. 2021
In vitro	Leaves	Leaves supercritical fluid extract	Bovine serum albu- min (BSA)	400–16,000 µg/ml	-	Inhibited BSA denaturation by 29–52% as anti-inflammatory activity.	Eissa et al., 2018
In vitro	Leaves	Leaves ethanol extract [Phytol (55) 29–34%; n- hexadecanoic acid) (68)]	Albumin	400–16,000 µg/ml	-	Exhibited concentration depended inhibition of albu- min denaturation <71%.	Zainurin et al. 2018
In vitro	Seeds	Ethanolic extract (27.7 g) (Phorbol esters) (58)	Blood of healthy human donor (20–30 years)	10 μΜ	PMA, P13K inhibitor LY294002	Inhibited elastase release in FMLF/CB inducted human neutrophils with IC ₅₀ $0.8-2.7 \ \mu$ M by the isolated pure phorbol esters compared to < 3.4 \ \muM of LY294002 exhibiting inflammation mod- ulatory activity.	Wagh et al. 2017
In vitro	Seeds	Ethanolic extract (27.7 g) (Phorbol esters) (58)	Blood of healthy human donor (20–30 years)	10 μΜ	PMA, P13K inhibitor LY294002	Enhanced superoxide in FMLF/ CB inducted human neutro- phils compared to < 2 µM of LY294002 exhibiting inflam- mation modulatory activity.	Wagh et al. 2017
In vitro	Seeds	Subfraction 4 of methanolic extract (Aquima- vitalin) (57)	A23187 and antigen induced degranu- lation in RBL-2H3 cells, Inhibition of β -hexosamini- dase release	10 μg/mL	-	Antiallergic activity by IC ₅₀ < 0.01 μg/mL (A23187 induced degranulation), < 0.07 μg/mL.	Korinek et al. 2016
In vitro	Woods	Aquilaria malaccen- sis oil (2.3% w/w)	Human red blood cell	100, 250, 500 mg/ml	Diclofenac (50, 100, 200 mg/ml)	Concentration dependant pro- tection of HRBC cell mem- brane < 40%, <63%, 78% in hypotonic solution than diclo- fenac <44%, < 64%, < 87% in HRBC membrane stabilization test as anti-inflammatory activity.	Rahman et al. 2012

5.1.1. Immunomodulatory potential against SARS-CoV2

The immunomodulatory potential of *A. malaccensis* against SARS-CoV2 was reviewed through the *in-silico* molecular target binding potential of the reported biomarkers with the targets viz., 3CLpro, ADP ribose phosphatase of NSP3, RNA binding protein of NSP9, RNA-dependent RNA polymerase RDRP, Spike protein S1, Mpro, PLpro and others. Direct studies were very less and the notable *in vitro* and *in-silico* studies on the reported biomarkers of *A. malaccensis* were available in separate publications and the most informative studies were reviewed and compiled (Table 3; Fig. 2). Caryophyllene oxide (**25**) reported 2.8– 8.6% in wood oil, showed a high binding affinity with molecular targets

of SARS-CoV2 including 3CLpro (– 6.0 kcal/mol), ADP ribose phosphatase of NSP3 (– 6.3 kcal/mol), RNA binding protein of NSP9 (– 6.3 kcal/mol), and RDRP (– 6.9 kcal/mol), stimulated TNF α and chemotherapeutic agents induced apoptosis and showed anti-invasive effect by suppressing NF-_{kB} (Tajuddin et al., 2013; Kim et al., 2014; Ahmaed et al., 2017; Duru et al., 2021). Likewise, the RNA-dependent RNA polymerase binding score by octacosane (**113**) was reported higher than the prescribed drug ramdesivir and by heneicosane (**110**) as similar to ramdesivir. Spike protein S1 binding score by heneicosane (**113**) was higher than umifenovir whereas the main protease enzyme binding score by octacosane (**113**) was comparable to

Potential immunomodulatory biomarkers of Aquilaria malaccensis Lam. against SARS-CoV2.

Study type	Compounds	Result	Reference
In vitro & In silico	Caryophyllene oxide (25) (2.8–8.6% in wood oil)	High binding affinity with molecular of SARS-CoV2 viz., 3- chymotrypsin-like protease (-6.0 kcal/mol), ADP ribose phosphatase of NSP3 (-6.3 kcal/mol), RNA binding protein of NSP9 (-6.3 kcal/mol), and RNA-dependent RNA poly- merase RDRP (-6.9 kcal/mol). Stimulated TNF α and che- motherapeutic agents induced apoptosis and showed anti- invasive effect by suppressing NF- _{kB} .	Tajuddin et al. 2013; Kim et al. 2014; Ahmaed et al. 2017; Duru et al. 2021
In-silico	Octacosane (113), Heneicosane (110) (0.3- 20% in wood oil)	RNA-dependent RNA polymerase inhibition binding score by octacosane (113) higher than ramdesivir, by heneicosane (110) similar to ramdesivir. Spike protein S1 inhibition binding score by heneicosane (110), octacosane (113) higher than umifenovir. Main protease enzyme inhibition binding score by octacosane (113) comparable to lopinavir.	Bhuiyan et al. 2009; Tajuddin et al. 2013; Wong et al. 2015; Samadi et al. 2017; Senarath et al. 2016; Elwakil et al. 2021
In-silico	α-santalol (47) (0.28–3.3% in wood oil)	Inhibited SARS-CoV-2 proteases viz., main protease Mpro < 71%; papaine like protease PLpro < 4.5%.	Faizal et al. 2017; Kao et al. 2018; Strub et al. 2021
In-silico	Agarospirol (20) (< 13%), Jinkoh eremol (51) (< 12%), Hinesol (30) (< 9%) (1.2-12.5%) in wood oil	Agarospirol (20), jinkoh eremol (51) exhibited strong binding affinity for immunomodulatory receptor and docking score comparable to diclofenac. Agarospirol (20), jinkoh eremol (51), hinesol (30) suppressed release of IL-1β, IL-6,TNF-α in dose dependent manner nearly comparable to diclofenac. Among female Swiss albino mice oil showed dose depen- dent 12-O-tetradecanoylphorbol-13 acetate induced ear edema reduction in mouse inflammatory model and MDA compared to reference indomethacin and vehicle control.	Norfatirah et al. 2013; Tajuddin et al. 2013, Wong et al. 2015; Yadav et al. 2013
In-vitro	GYF-21 [2-(2-phenyl ethyl) Chromone derivative] (2-(2-phenyl ethyl) Chromone (144) 2.07- 26.82% in wood oil	GYF-21 inhibited B cell by inhibiting B cell activating factor through down regulated phosphorylation of NF- _{kB P} 65, STAT3, Akt while upregulated phosphorylation of Erk1/2 influenced by anti-IgM, anti-CD40, IL-4 while strongly inhibited phosphorylation of Erk1/2 and Akt influenced by B cell activating factor in splenocytes of 8-10 weeks aged BALB/c male mice.	Mei et al. 2013; Jong et al. 2014; Guo et al. 2019; Kao et al. 2021

Fig. 2. Molecular docking showing SARS M-protein binding potential of biomarkers of agarwood from Aquilaria malaccensis.

lopinavir (Bhuiyan et al., 2009; Tajuddin et al., 2013; Wong et al., 2015; Senarath et al., 2016; Samadi et al., 2017; Elwakil et al., 2021). Similarly, α -santalol (47) reported 0.28–3.3% in wood oil inhibited Mpro (< 71%), PLpro < 4.5%; agarospirol (**20**) (< 13%), and jinkoh-eremol (51) (< 12%) exhibited a strong binding affinity for immunomodulatory receptors with docking score comparable to diclofenac. In congruence, agarospirol (20), jinkoh-eremol (51), and hinesol (30) (< 9%) suppressed the release of IL-1 β , IL-6, TNF- α in a dose-dependent manner nearly comparable to diclofenac in vitro. Among female Swiss albino mice, wood oil showed dose-dependent 12-O-tetradecanoylphorbol -13 acetate induced ear edema reduction and MDA reduction compared to reference indomethacin and vehicle control in vivo as anti-inflammatory potential (Norfatirah et al., 2013; Tajuddin et al., 2013; Yadav et al., 2013; Wong et al., 2015). Further, GYF-21, the 2-(2phenyl ethyl) chromone (144) derivative of Chinese agarwood oil inhibited B cell by hindering B cell activating factor through downregulating phosphorylation of NF-kB P65, STAT3, and Akt. GYF-21 slightly enhanced the phosphorylation of Erk 1/2 induced by anti-IgM, anti-CD40, and IL-4 and strongly suppressed phosphorylation of Erk 1/2 and Akt activated by B cell activating factor in splenocytes of 8-10 weeks aged BALB/c male mice showing immunomodulatory potential on autoimmune diseases of B-cell (Mei et al., 2013; Jong et al., 2014; Guo et al., 2019; Kao et al., 2021).

5.2. Antidiabetic activity

As diabetes is a chronic degenerative ailment leads to deficiency in immunity, the antidiabetic activity of the species was thoroughly studied. Limited numbers of *in vivo* and *in vitro* studies were available for review and the notable studies with the most informative results were compiled (Table 4). In 14 days, in vivo study, among diabetic model of 8 weeks old ICR male mice, injected with STZ 100 mg/kg b. w. with fasting sugar > 200 mg/dl, both methanolic and water extracts of leaves of Aquilaria malaccensis at 50 mg / kg b.w. brought down blood glucose level to normal range (Fayyadh et al., 2020). In another study of 3-4 months old 30 male mice of 20-35 g, leaf ethanolic extract at 250 mg/kg b.w. lowered blood sugar <188 mg/dl compared to positive control \leq 218 mg/dl and negative control 276 mg/dl (Musrifani et al., 2020). Air dried leaf methanolic extract inhibited α -glucosidase enzyme by 92% with IC₅₀ 84 μ g/mL compared to 94% inhibition of Quercetin with IC₅₀ < 11 μ g/mL and in another study with IC₅₀ \leq 376 μ g/ml while with Acarbose IC₅₀ \leq 824 μ g/ml. Whereas, ethanolic flower extract showed IC₅₀ \leq 701 μ g/ mL and dose-dependent inhibition up to 47-92% (Zulkifle et al., 2013; Rajagopal et al., 2016; Nadilah et al., 2019). Similarly, leaf methanolic extract inhibited α -amylase with IC₅₀ \leq 397 μ g/mL compared to IC₅₀ of Acarbose 940 μ g/mL, whereas, ethanolic extract of microwave dried (50 watts) leaves achieved highest inhibition at 75%, and ethanolic flower extract with dose-dependent inhibition

Table 4 Antidia

Antidiabetic activity of Aquilaria malaccensis Lam.

Study type	e Plant parts	Extract/Compound	Experimental model	Dosages	Control	Activity of Compound/ Extract.	Reference
In vivo	Leaves	95% methanolic; water	Diabetic model, 8 weeks old ICR male mice (injected with STZ 100 mg/kg b.w.) fasting sugar > 200 mg/dl, 14 days study	50, 100, 150 mg / kg b.w.	-	50 mg /kg b.w. of both extracts brought down blood glucose level to nor- mal range.	Fayyadh et al. 2020
In vivo	Leaves	Ethanolic extract	3–4 months old 30 male mice of 20–35 gms	250, 500, 1000 mg/kg b.w. of ethanolic extract + maltose	+ve control, -ve control	250 mg/kg b.w. of ethanolic extract lowered blood sugar < 188 mg/dl com- pared to positive control ≤ 218 mg/dl and negative control 276 mg/dl.	Musrifani et al. 2020
In vitro	Leaves	Aqueous, ethanolic, methanolic, chlo- roform, hexane extract	lpha-glucosidase assay	-	+ve control quercetin	Air dried methanolic extract inhibited α - glucosidase enzyme 92% with IC ₅₀ 84 μ g/mL compared to 94% inhibition of quercetin with IC ₅₀ < 11 μ g/mL	Nadilah et al. 2019
In vitro	Flowers	Ethanolic extract	lpha-amylase enzyme	50, 100, 200, 400, 800 mg/ml	-	$IC_{50} \le 801 \ \mu g/ml$, dose dependent inhibition $27-99\%$.	Rajagopal et al. 2016
In vitro	Flowers	Ethanolic extract	α-glucosidase enzyme	50, 100, 200, 400, 800 mg/ml	-	$IC_{50} \le 701 \mu g/ml$, dose dependent inhibition $47-92\%$.	Rajagopal et al. 2016
In vitro	Leaves (50, 100 and 500 watt micro- wave drying)	Ethanolic extract	α -amylase enzyme		-	Achieved 75% as highest inhibition in 50 watt microwave drying.	Yunus et al. 2015
In vivo	Leaves	Methanolic extract	Diabetic model STZ (45 mg/kg b.w.) induced SD male rats 200–280 g, 42 number, 7 days study	200, 400, 600, 800, 1000 μg/mL	Acarbose	Inhibited α -glucosidase with $IC_{50} \leq 376 \ \mu g/ml$ compared to IC_{50} of acarbose $\leq 824 \ \mu g/ml$.	Zulkifle et al. 2013
In vivo	Leaves	Methanolic extract	Diabetic model STZ (45 mg/kg b.w.) induced SD male rats 200–280 g, 42 number, 7 days study	200, 400, 600, 800, 1000 μg/mL	Acarbose	Inhibited α -amylase with IC ₅₀ \leq 397 μ g/ml compared to IC ₅₀ of acarbose 940 μ g/ml.	Zulkifle et al. 2013

27–99% and IC₅₀ \leq 801 μ g/mL (Zulkifle et al., 2013; Yunus et al., 2015; Rajagopal et al., 2016). However, most of the studies were devoid of both positive and negative control, integrated *in vitro* and *in vivo* studies, and further exhibited a very high concentration of IC₅₀ values.

5.3. Neural activity

As CNS and the related systems are greatly intertwined with the immune system and neurological ailments are chronic and degenerative in nature, the effect of agarwood from A. malaccensis on neural system was critically studied. Noteworthy in vivo and in-vitro studies were compiled (Table 5). Ethanolic wood chips of A. malaccensis significantly decreased stress-related markers viz., AchE, NO, MDA, COX-2, LOX, MAO, TNF_{α} and Caspase-3 in an experimental rat brain and liver of SD rats with 100 mg/kg dosage once per week compared to methanol-treated rats with 3 g/kg in one in vivo study of 35 days (Hamouda, 2019). Agarwood essential oil comprising sesquiterpenes, aromatic and other known compounds showed dose-dependent (10, 20, 40 mg/kg) efficacy i.e., best at 40 mg/kg in anxiety models viz., (EPM) by increased time, distance, and entry in open arms, (LDE) by increased time, distance in the light compartment, (OF) by increased time, and distance using diazepam 2.5 mg/kg as a reference to overcome anxiety; in antidepressant models viz., tail suspension, forced swimming by decreasing immobility using referral paroxetine (10 mg/Kg) to overcome depression in multiple studies among 84 numbers of <20 g male ICR mice. Further, the study showed a dosedependent decrease in IL-1 α , IL-1 β , and IL-6, suppression of ACTH and CORT against referral drug diazepam, suppression of mRNA in nNOS, decreased gene expression of CRF, CRFR, gene transcription in cerebral cortex and hippocampus to inhibit hyperactive HPA axis to overcome stress (Wang et al., 2018b).

In another *in vivo* study for 7 days in 6–8 weeks adult male BALB/ c mice free of disease showed enhanced 5-HT in serum (551 \pm 344 ng/mL to 952 \pm 334 ng/mL) after inhalation of agarwood smoke for 45 min/day and upregulated expression of neuroactive genes Crhr2, Chrnd and relevant interaction pathway of ligand-receptor. The sedative perfumery smoke of agarwood was evaluated through a gene expression study in the brain cells of mice using the microarray technique. The study revealed a total of 1417 genes comprising 687 upregulated and 730 downregulated genes with fold change \geq 1.5 or \leq -1.5 respectively. Fold changes and genes were accessed using DAVID and KEGG pathways. It was found that agarwood smoke affected five emotion-related pathways including dopaminergic synapse, serotonergic synapse, GABAergic synapse, long-term depression, and neuroactive ligand-receptor interaction. Gene expression was evaluated through qPCR using primer genes Crhr2, Chrnd, and Gapdh. It was found that Crhr2 and Chrnd genes of the neuroactive ligand-receptor pathway were upregulated by 1.14 and 2.27 folds, respectively. As neuroactive ligand-receptor emotion-related pathways involve serotonin and anti-nociceptive activity via T-type voltage-gated calcium channels, the study revealed that Crhr2 and Chrnd genes had been responsible for the expression of the neuroactive ligand-receptor pathway and upregulated serotonin levels in mice brain cell to overcome stress-related diseases (Fig. 3); (Tuem and Atey, 2017; Kao et al. 2021).

In two consecutive multiple *in vivo* studies, benzene extract of agarwood suppressed CNS depressant activity. Biomarkers jinkoheremol (**51**) and agarospirol (**20**) found in fractionated extract exhibited neuroleptic activity by extending hexobarbital initiated sleeping time < 100 and < 98 min respectively compared to < 93 min by the fractionated extract using 200 mg/kg while nitrazepam showed <110 min at 10 mg/kg and vehicle control < 31 min. Both the biomarkers and the extract lowered the rectal temperature compared to control after 30 mins of administration, antinociceptive activity by reducing acetic acid initiated writhing numbers comparable to aminopyrine and almost 3.5–4 times lower than control applying 200 mg/kg. At a lower dose of 25–50 mg/kg, both the markers significantly decreased spontaneous locomotor count numbers 23 and 38 respectively than 200 in control after 50–60 min of administration. Jinkoh-eremol **(51)** decreased methamphetamine, chlorpromazine, and apomorphine (2 mg/kg) initiated spontaneous locomotor count numbers after 30–120 min and increased monoamine oxidase derivative (Okugawa et al., 1993; 1996). However, most of the experiments lacked either isolation of biomarkers, or results with higher doses lacked potential for translational use in human therapeutics.

5.4. Antimicrobial activity

As weak immune system is prone to get microbial infection, antimicrobial activity of Aquilaria malaccensis was carefully studied. The review found that significant antimicrobial activity of various solvent extracts of mostly leaves, stem, bark of Aquilaria malaccensis was evaluated by inhibition zone (ZoI), and MIC value against different bacterial strains and fungi (Table S2). Ethanolic extract from which 6,7 dimethylquinoxaline (154) was isolated showed significant ZoI 20 mm against Staphylococcus aureus compared to control amoxycillin, 16 mm against Candida albicans, and 7 mm against Trichophyton sp. compared to ketoconazole (Batubara et al., 2021). Likewise, ethyl acetate extract with 1,7 dihydroxy-3 methoxyanthraquinone (121) showed ZoI 12 mm against Bacillus cereus and 9 mm against Vibrio cholerae using kanamycin as a reference was isolated (Shoeb et al., 2010). Leaf ethanolic extract (1 mg/mL) exhibited significant MIC <0.004 mg/mL against Pseudomonas aeruginosa and < 0.07 mg/mL against Proteus mirabilis using amoxicillin as reference (Apridamayanti and Sari, 2019). Most of the experiments were conducted with extracts without isolating the biomarkers and lacked the use of positive and negative controls, used non-polar extracts viz., chloroform, hexane, and lacked MIC values.

5.5. Miscellaneous

As immunity is related to overall wellbeing against any health ailment, several other biological activities exerted by A. malaccensis available in published literature were also studied (Table S3). Crude aqueous leaf extract with 250 μ m particle size of dried leaves exhibited the highest non-competitive inhibition (82%) on pancreatic lipase showing anti-obesity activity (Muhd Rodhi et al., 2020). However, 100 mg/kg/day leaf aqueous extract and 100 mg/kg/day aqueous extract + 200 mg/kg cyclophosphamide significantly enhanced the number of oocytes, fertilization rate, fragmentation degree of cleavage in the embryo, and blastomere structure of cleavage compared to control and cyclophosphamide showing improvement in fertility in multiple in vivo study for 63 days among SD rats (Ismail et al., 2019). In another study, leaf ethanolic extract viz., 400 mg/kg b.w. /day, extract + paracetamol 3 mg/kg b.w. lowered hepatotoxicity markers namely AST, ALT, ALP, LDH, bilirubin, cholesterol, ALB, TP, body weight, and liver weight than the paracetamol treated hepatotoxicity group (1% CMC, 1 mL/kg b.w. + paracetamol 3 mg/kg b.w.) (Alam et al., 2017). However, the studies were insufficient to derive a therapeutic window against obesity, reproductive health, and hepatoprotective efficacy.

6. Human clinical trials

Only three human clinical trials were available with direct use of *A. malaccensis* in polyherbal products. A study for 8 months period among 10 males and 5 females of 16–40 years with an ayurvedic polyherbal formulation of *A. malaccensis* at 15 g improved symptoms of pulmonary tuberculosis (Raghuvanshi et al., 2004). Further, another polyherbal drug containing *A. malaccensis* at 6 g improved the skin disorder in a clinical trial conducted among 120 patients for 12 weeks

Table 5 Neural activity of *Aquilaria malaccensis* Lam.

Study type	Extract/Part used	Compound	Experimental animal	Dosages	Control	Activity	Reference
In vivo	Agarwood smoke	2-(2-Phenylethyl) Chromone (144)	6–8 weeks old male BALB/c mice free of disease	Inhalation 45 min /day for 7 days	-	Enhanced 5-HT in serum, up-regulated <i>Chr2</i> and <i>Chrnd</i> gene expression and interaction pathways of ligand-receptor.	Kao et al. 2021
In vivo	Ethanolic wood chips	Hexadecanamide (71), Octadecanoic acid (67) and others	≤110 gm adult male SD rats 40 num- bers for 35 days	100 mg/Kg once per week	Untreated rats showed < 0.85 mU/ml AchE in brain	Reduced AchE < 1.5 mU/mL than methanol treated < 4 mU/mL.	Hamouda 2019
In vivo	Ethanolic wood chips	Hexadecanamide (71), Octadecanoic acid (67) and others	≤110 gm adult male SD rats 40 num- bers 100 mg/Kg once per week	100 mg/Kg once per week	Untreated rats showed < 3.5 mU/ml NO in brain	Reduced NO <7 mU/mL than methanol treated \leq 22 mU/mL.	Hamouda 2019
In vivo	Ethanolic wood chips	Hexadecanamide (71), Octadecanoic acid (67) and others	≤110 gm adult male SD rats 40 numbers	100 mg/kg once per week	Untreated rats showed <1.7 nmol/g MDA in brain	$\begin{array}{l} \mbox{Reduced MDA} < 2 \ \mbox{nmol/g} \\ \mbox{than methanol treated} \leq 4 \\ \mbox{nmol/g}. \end{array}$	Hamouda 2019
In vivo	Ethanolic wood chips	Hexadecanamide (71), Octadecanoic acid (67) and others	≤110 gm adult male SD rats 40 numbers	100 mg/kg once per week	Untreated rats showed < 0.025 U/mL COX- 2 in brain	Reduced COX-2 < 0.035 U/mL than methanol treated < 0.085 U/ml.	Hamouda 2019
In vivo	Ethanolic wood chips	Hexadecanamide (71), Octadecanoic acid (67) and others	≤110 gm adult male SD rats 40 numbers	100 mg/kg once per week	Untreated rats showed < 0.005 µgmol/mg LOX in brain	$\label{eq:reduced_LOX} \begin{array}{l} \mbox{Reduced_LOX} < 0.0095 \\ \mbox{μgmol/mg$ than methanol} \\ \mbox{treated} < 0.0125 \mbox{μgmol/$} \\ \mbox{mg}. \end{array}$	Hamouda 2019
In vivo	Ethanolic wood chips	Hexadecanamide (71), Octadecanoic acid (67) and others	≤110 gm adult male SD rats 40 numbers	100 mg/kg once per week	Untreated rats showed < 3.7 µU/ ml MAO in brain	Reduced MAO $< 5 \mu$ U/mL than methanol treated \leq 13.3 μ U/mL.	Hamouda 2019
In vivo	Ethanolic wood chips	Hexadecanamide (71), Octadecanoic acid (67) and others	≤110 gm adult male SD rats 40 numbers	100 mg/kg once per week	Untreated rats showed ≤ 14 pg/mL TNF _α in brain	$\begin{array}{l} \mbox{Reduced TNF}_{\alpha} \leq 21 \mbox{ pg/mL} \\ \mbox{than methanol treated} \leq \\ \mbox{47 pg/mL}. \end{array}$	Hamouda 2019
In vivo	Ethanolic wood chips	Hexadecanamide (71), Octadecanoic acid (67) and others	≤110 gm adult male SD rats 40 numbers	100 mg/kg once per week	Untreated rats showed < 0.085 OD for Caspase-3 at 405 nm in brain	Reduced OD of Caspase -3 < 0.095 than methanol treated 0.13.	Hamouda 2019
In vivo	Essential oil	Sesquiterpenes (\leq 51%), aromatic (\leq 24%), known (\leq 20%) compounds	≤20 gm Male ICR mice 84 numbers	10,20,40 mg/kg per day	Diazepam 2.5 mg/kg	Dose dependent increased time, distance, entry in open arms in Elevated plus maze experiment to overcome anxiety.	Wang et al. 2018b
In vivo	Essential oil	Sesquiterpenes (≤ 51%), aromatic (≤ 24%), known (≤ 20%) compounds	≤20 gm male ICR mice 84 numbers	10,20,40 mg/kg per day	Diazepam 2.5 mg/kg	Dose dependent increased time, distance in light compartment in Light dark exploration experi- ment to overcome anxiety.	Wang et al. 2018b
In vivo	Essential oil	Sesquiterpenes (\leq 51%), aromatic (\leq 24%), known com- pounds (\leq 20%) compounds	≤20 gm male ICR mice 84 numbers	10,20,40 mg/Kg per day	Diazepam 2.5 mg/kg	Dose dependent increased time, distance in central area in Open field experi- ment to overcome anxiety.	Wang et al. 2018b
In vivo	Essential oil	Sesquiterpenes (\leq 51%), aromatic (\leq 24%), known compounds (\leq 20%)	≤20 gm male ICR mice 84 numbers	10,20,40 mg/kg per day	Paroxetine (10 mg/ kg)	Decreased dose dependent immobility in Tail suspen- sion experiment to over- come depression.	Wang et al. 2018b
In vivo	Essential oil	Sesquiterpenes (≤ 51%), aromatic (≤ 24%), known com- pounds (< 20%)	≤20 gm male ICR mice 84 numbers	10,20,40 mg/kg per day	Paroxetine (10 mg/ kg)	Decreased dose dependent immobility in Forced swimming experiment to overcome depression.	Wang et al. 2018b
In vivo	Essential oil	Sesquiterpenes (\leq 51%), aromatic (\leq 24%), known compounds ($<$ 20%)	≤20 gm male ICR mice 84 numbers	10,20,40 mg/kg per day	Diazepam 2.5 mg/kg	Decreased IL-1 α , IL-1 β and IL-6 to inhibit hyperactive HPA axis to overcome stress.	Wang et al. 2018b
In vivo	Essential oil	Sesquiterpenes (\leq 51%), aromatic (\leq 24%), known compounds (\leq 20%)	≤20 gm male ICR mice 84 numbers	40 mg/kg per day	-	Suppressed mRNA of nNOS in cerebral cortex and hip- pocampus to inhibit hyperactive HPA axis to overcome stress.	Wang et al. 2018b
In vivo	Essential oil	Sesquiterpenes (\leq 51%), aromatic (\leq 24%), known compounds (\leq 20%)	≤20 gm male ICR mice 84 numbers	40 mg/kg per day	-	Decreased gene expression of CRF, CRFR and gene transcription in cerebral cortex and hippocampus	Wang et al. 2018b

(continued)

Table 5 (Continued)

Study type	Extract/Part used	Compound	Experimental animal	Dosages	Control	Activity	Reference
In vivo	Essential oil	Sesquiterpenes (\leq 51%), aromatic (\leq 24%), known compounds ($<$ 20%)	≤20 gm male ICR mice 84 numbers	10,20,40 mg/kg per day	Diazepam sup- pressed CORT without effect on	to inhibit hyperactive HPA axis to overcome stress. Dose dependently sup- pressed ACTH and CORT.	Wang et al. 2018b
In vivo	Benzene extract (Fraction I 0.55 g, 0.155%), Fraction B (1.51 g, 0.41%)	Jinkoh-eremol (51) (519 mg.0.228%), Agarospirol (20) (216 mg, 0.095%) from Fraction I	Mice	200 mg/kg	Vehicle control	Fraction B extended hexo- barbital initiated sleeping time < 93 min, Jinkoh- eremol (51) (200 mg/kg) showed < 100 mins, Agar- ospirol (20) (200 mg/kg) < 98 mins, Nitrazepam (10 mg/kg) <110 min, control < 31 mins showing neuro- leptic activity.	Okugawa et al. 1996
In vivo	Benzene extract (Fraction I 0.55 g, 0.155%), Fraction C (1.61 g, 0.44%) of wood	Jinkoh-eremol (51) (519 mg,0.228%), Agarospirol (20) (216 mg,0.095%) from Fraction I	Mice	200 mg/Kg	Vehicle control	Fraction C lowered rectal temperature after 30 min < 37°C whereas Jinkoh eremol (51) < 36°C, Agar- ospirol (20) <37°C, con- trol < 38°C.	Okugawa et al. 1996
In vivo	Benzene extract (Fraction I 0.55g, 0.155%), Fraction C (1.61 g, 0.44%) of wood	Jinkoh-eremol (51) (519 mg, 0.228%), Agarospirol (20) (216 mg,0.095%) from Fraction I	Mice	200 mg/Kg	Vehicle control	Fraction C decreased acetic acid initiated writhing number <3, Jinkoh-ere- mol (51) (200 mg/Kg) < 4, Agarospirol (20) (200 mg/ kg) 3, Aminopyrine (100 mg/kg) <2.0, control <15 showing antinociceptic activity.	Okugawa et al. 1996
In vivo	Benzene extract (Fraction I 0.55g, 0.155%), Fraction C (1.61 g, 0.44%) of wood	Jinkoh-eremol (51) (519 mg, 0.228%), Agarospirol (20) (216 mg, 0.095%) from Fraction I	Mice	200 mg/kg 25 mg/kg	Vehicle control	Fraction C decreased sponta- neous locomotor count numbers 63, Jinkoh ere- mol (51) by 58, control 270 after 50–60 min. Jin- koh eremol (51) decreased spontaneous locomoter count numbers 23, Agaro- spirol (20) 38, control 200 after 50–60 min. Jinkoh- eremol (51) decreased methamphetamine, chlor- promazine, apomorphine (2 mg/kg) initiated spon- taneous locomoter count numbers after 30–120 min. showing neuroleptic potential. Monoamine oxidase derivative homovallinic acid was increased after 30 min. of administration of 50 mg/kg Jinkoh-ere- mol (51) and Agarospirol (20).	Okugawa et al. 1996
In vivo	Benzene extract of wood	-	Male DDY mice	1000 mg/kg	-	Suppressed CNS depressant activity by gross behav- iour, spontaneous motil- ity, increase in hexobarbiturate initiated sleeping time, lowered rectal temperature, acetic acid initiated reduction of writhing numbers as anal- gesic activity.	Okugawa et al. 1993
In vitro	Wood	5,6-dihydroxy -2- (2-Phenylethyl) Chromone (145) and other chromones		30 µM		Stimulated adiponectin syn- thesis by PPAR γ mediated interaction \leq 2-fold than IDX (control).	Ahn et al. 2019

Fig. 3. Gene expression of neuronal activity by biomarkers of agarwood from Aquilaria malaccensis.

(Sharma et al., 2019). Orally administered buagafuran (**65**), isolated from *A. malaccensis*, at 30-70 mg/kg b.w. lowered anxiety, increased plasma counts, and stimulated brain concentration without increasing body weight in an open uncontrolled study comprising 12 healthy males (22–40 years) of 55–70 kg (Yang et al., 2017). All these studies were conducted for a short duration, mostly single blind without the experimental design on safety, pharmacokinetics, drug interaction, and others.

7. Toxicity

Both in vivo and in vitro studies available on toxicity were reviewed and the most significant results were compiled where the anticancer activity of A. malaccensis was also assessed majorly based on cytotoxicity and cell viability (Table 6). Both acute and subacute oral toxicity studies with aqueous leaf extract among healthy ICR mice and SD rats in multiple experiments revealed that 2000 mg/kg b.w./ day for 7–14 days with $LD_{50} > 2000 \text{ mg/kg}$ showing nontoxic experimental dose for the duration while in ICR mice with increased sperm count $< 1.2 \ 10^6$ / mL compared to control (saline). However, subacute oral toxicity after 21 days of a repeat dose of 100 mg/kg b.w. and 150 mg/kg b.w. exhibited an increased number of sperms compared to control (saline) in mice but enhanced hepatotoxic markers viz., AST, ALT, alkaline phosphatase, formation of vascular congestion, lymphocytic infiltration in the liver, cytoplasmic vacuolation and pyknotic nuclei in the kidney after 28 days, showing toxic effect in rats (Razak et al., 2018; Musa et al., 2019). In a mixed study, crude ethanolic leaf extract before and after inoculation at 200 mg/kg and 400 mg/kg increased the mean survival period in EAC injected Wistar albino rats against DLA cell line rats i.e., 25-31 days similar to cisplastin treated \leq 31 days, greater than control EAC mice of 21 days where IC₅₀ values against DLA cell line were 72-75 μ g/mL

and EAC cell line $< 80 \,\mu$ g/mL (Hegde et al., 2018). In vitro cytotoxicity experiment was mostly conducted by MTT, Trypan Blue, and WST-1 assay on several cancer cell lines. Bark oil extracted by Supercritical Fluid extraction exhibited good cytotoxicity with IC₅₀ value $< 4 \mu g/$ mL and growth inhibition < 99.5% in the most effective fraction on HCT 116 cancer cell whereas methanolic bark extract containing 2-(2-Phenylethyl) Chromone (144) and other compounds exhibited moderate cytotoxicity with IC₅₀ <14.50 μ g/mL on Murine leukemia P-388 cells and resin oil with an IC₅₀ value of 44 μ g/mL against MCF-7 breast adenocarcinoma cell (Ibrahim et al., 2011; Hashim et al., 2014; Adam, 2017; Gameil et al., 2019; Eissa et al., 2020; Rudiana et al., 2021). Leaf ethanolic extract showed strong cytotoxicity with $IC_{50} < 25$ mg/mL and LD_{50} 4537 mg/kg against PBMCs cell and both ethanolic and aqueous extracts showed cytotoxicity against Vero cells with $CC_{50} < 260 \ \mu g/mL$ and $< 1720 \ \mu g/mL$ respectively, compared to CC₅₀ of diminazene aceturate $< 32 \ \mu g/mL$ (Dyary et al., 2014; Adam et al., 2018). Most of the studies lacked the use of reference drugs and the use of normal or Vero cell lines in assessing cytotoxicity and IC₅₀ values were >10 μ g/mL, beyond the potential of therapeutical use in human.

8. Agarwood production and gene expression

Agarwood oil naturally produced in *Aquilaria malaccensis* by interaction of endophytic fungi or microbes is dependent on the age of the plantlet and longer duration of time than by nailing, drilling, fungal inoculation and others (Blanchette et al., 2015; Azren et al., 2019; Islam et al., 2020). The microbial diversity associated with the agarwood and the characteristic strong aroma of agar oil were reviewed and the most significant information was compiled (**Table S4**). Artificial infection by mechanical drilling and inoculation of *Fusarium solani* (Mart.) Sacc. exhibited agarwood formation where oil contained

Toxicity of Aquilaria malaccensis Lam.

Study type	Type of toxicity	Extract /Compound	Experimental model	Dosage/assay type	Effect	Reference
In vivo	Acute oral toxicity, Sub- acute oral toxicity	Leaf aqueous extract	12–14 weeks old male ICR mice nearly 34 g	2000 mg/Kg	$LD_{50} > 2000 \text{ mg/kg}$ in acute oral toxicity showing nontoxic treat- ment dose and increased sperm count < 1.2 10 ⁶ / mL compared to control (saline). After 21 days of repeat dose of 100 mg/kg b.w. and 150 mg/kg b.w., number of sperms increased compared to control (saline).	Musa et al. 2019
In vivo	Reproductive toxicity	Leaf aqueous extract	8–12 weeks old 48 males SD rats of 150–200 g in 8 groups, 63 days study	100 mg/kg/day aqueous extract	Increased sperm count < 2.37 × 10 ⁷ /mL, motility < 55.5%, viability < 84.2%, abnormal < 13% than 200 mg/kg cyclophos- phamide treated < 2.1 × 10 ⁷ /mL, < 41.3%, < 65.5%, abnormal < 28.3%. Decreased abnormal sperm head < 1.4, tail < 11.6 % than 200 mg/kg cyclophospha- mide treated < 2.3 < 26.1%	Razak et al. 2019
In vivo	Sub-acute oral toxicity	Leaf aqueous extract	 8–12 weeks old SD rats of 150–200 g Female in acute oral toxicity (8 numbers), 14 days. 20 females and 20 males in subacute oral toxicity, 28 days 	2000 mg/kg	No observed change in histopa- thology. LD ₅₀ > 2000 mg/kg in acute oral toxicity showing non- toxic treatment dose. Increased hepatotoxicity markers viz., AST, ALT, alkaline phosphatase, glob- ulin, albumin, protein, formation of vascular congestion and lym- phocytic infiltration in liver and cytoplasmic vacuolation and pyknotic nuclei in kidney after 28 days showing toxicity.	Razak et al., 2018
In vivo		Leaf ethanolicextract	Wistar albino rats of either sexes (EAC injected)	200 mg/kg, 400 mg/kg, Tumor control (EAC) survival period ≤21days	BF & AF of ethanol extract increased mean survival period in EAC injected albino rats 25–31 days similar to Cisplastin treated < 31 days.	Hegde et al. 2018
In vitro	Cytotoxicity	Methanolic bark extract [2-(2-Phenylethyl) Chromone (144) and other compounds]	Murine leukemia P-388 cells	MTT-	$IC_{50} < 14.50 \ \mu g/mL$	Rudiana et al. 2021
In vitro	Oral toxicity	Leaf ethanolic extract	Oral epithelial cell	WST-1 assay	10 μ g/mL decreased cell viability $< 93\%$	Eissa et al. 2020
In vitro	Cytotoxicity	Agarwood hydrosol [16- hentriacontanone (105), 1-tricosene (104)]	Calu-3 adeno carcinoma lung cancer cell	Trypan blue (dye attach- ment assay), MTT	Dye attachment assay inhibited < 22.5%, Highest inhibition < 95.2%.	Gameil et al. 2019
In vitro	Cytotoxicity	Leaf ethanolic extract	EAC & DLA cell lines	100 μg/ml extract of leaves before inocula- tion (BF) & after inoc- ulation (AF)	IC ₅₀ against DLA cell line 72–75 μ g/ml, EAC < 80 μ g/ml com- pared to normal spleen cell with IC ₅₀ value > 100 μ g/ml.	Hegde et al. 2018
In vitro	Cytotoxicity	Leaf methanolic extract	PBMCs cell	MTT	IC ₅₀ < 25 mg/mL, LD ₅₀ < 4537.5 mg/kg, resulted comet shaped fragmented DNA.	Adam et al. 2018
In vitro	Cytotoxicity	Methanolic leaf extract	PBMCs cell	MTT	IC ₅₀ < 25 mg/mL, LD ₅₀ < 4537.5 mg/kg, resulted comet shaped fragmented DNA.	Adam 2017
In vitro	Cytotoxicity	Resin oil	MCF-7 breast adenocar- cinoma cell	-	IC ₅₀ value 44 μ g/ml, \leq 50% reduction in cell viability at 0.2 mg/ml	Hashim et al. 2014
In vitro	Cytotoxicity	Leaf aqueous extract, Ethanolic extract	Vero cells of monkey	МТТ	CC_{50} of ethanolic extract < 260 μ g/ml ml and aqueous extract < 1720 μ g/ml compared to control. Diminazene aceturate CC_{50} <32 μ g/ml.	Dyary et al. 2014
In vitro	Cytotoxicity	Bark oil by Supercritical Fluid extraction	HCT 116 cancer cell	MTT	Most effective fraction with IC ₅₀ value < 4 μ g/ml and growth inhibition < 99.5%.	Ibrahim et al. 2011

biomarkers viz., aromadendrenepoxide (24), -8-methoxy-2-(2phenylethyl) chromen-4-one (143), benzylacetone (120), guaiacol (87), palmitic acid (68), squalene (61), tridecanoic acid (69), α -santalol (47) and others (Faizal et al., 2017; Nasution et al., 2020). Fungal association was identified through rDNA *ITS* region of the cultured fungi genera viz., *Alternaria, Cladosporium, Curvularia, Fusarium,* Phaeoacremonium, Trichoderma and others (Premalatha and Kalra, 2013). Similarly, *Cunninghamella, Curvularia, Fusarium, Trichoderma, Lasiodiplodia* were inoculated where infected trunk oil contained benzylacetone (**120**), anisylacetone (**50**), guaiene (**13**) and palustrol (**39**) (Mohamed et al., 2010; Mohamed et al., 2014). Similarly, *Aspergillus, Bacillus, Trichoderma, Pantoea dispersa, Penicillium*

G

Genes/Transcription factor/Enzyme	Experiments	Activity	Reference
TDF 1(δ-selinene Synthase), TDF-2(δ–Guaine synthase), TDF-3 (1-deoxy-D-xylulose-5- phosphate-synthase), TDF-4(Farnesyl pyro- phosphate synthase), TDF-5(Sesquiterpene synthase 4)	RNA was extracted from infected, non- infected and artificially induced wood samples of <i>Aquilaria malaccensis</i> . cDNA library was prepared and transcription fac- tors and genes were analysed through qRT- PCR in cDNA-AFLP method.	<i>TDF-1</i> involved in oleoresin synthesis, <i>TDF-5</i> yielded δ-guaiene (19) <75%, <i>TDF-3</i> involved in MEP pathway of sesquiterpene backbone synthesis, <i>TDF-4</i> was found as branch point enzyme to catalyze terpenoid biosynthesis in agarwood. 11 numbers of differentially expressed transcription derived factors (<i>DE-TDFs</i>) were detected in infected or commercially beneficial agarwood as response to defense.	Islam and Banu. (2021)
Putative functional terpene synthase genes	In-silico analysis of genomics and transcrip- tomics data of public domain	Study revealed putative functional terpene synthase genes associated with stress, light and hormones in <i>Aguilaria malaccensis</i> .	Das et al. (2021)
Chromone derivatives, sesquiterpenes	Use of Methyl jasmonate (MeJA) <i>in vitro</i> detected chromone derivatives, sesquiter- penes, and aqueous crude extract of <i>Fusar-</i> <i>ium solani</i> detected alkanes, fatty acid derivatives and aroma compounds in <i>in</i> <i>vitro</i> raised shoots.	MeJA and aqueous crude extract of <i>Fusarium</i> solani acted as elicitor for production of compounds of agarwood <i>in vitro</i> .	Faizal et al. (2017)
HMGR, ASS, ADXPS, ADXPR, FPS, WRKY, MYC, MYB and others	Agarwood was wounded mechanically, artifi- cially and chemically and total RNA was isolated and gene expression of 25 genes of terpenoid biosynthesis were analysed using semi-quantitative PCR and qRT-PCR from heathy and infected woods.	25 genes of sesquiterpenoid biosynthetic pathway were upregulated to \leq 41.6 fold in agarwood than healthy wood exhibiting genes of agarwood formation expressing more in naturally grown plant than artifi- cially induced.	Islam et al. (2020)
Malate Synthase and Nicotinamide Adenine Dinucleotide Phosphate quinone oxidore- ductase subunit 2B	Detected proteins expressed after wounding by 2-D gel electrophoresis coupled to MALDI-TOF-MS	Revealed wounding effect on protein expres- sion in agarwood formation.	Lee et al. (2018)
HMGR, AACT, GPS, FPS, GGPS, NPPS	Transcriptome libraries was prepared from <i>in</i> <i>vitro</i> induced callus tissue of <i>Aquilaria mal-</i> <i>accensis</i> and qRT-PCR revealed gene expression in healthy, wounded and sen- escing calli.	Genes of KEGG pathways for terpenoids bio- synthesis were expressed in calli revealing effect of wounding alike senescence.	Siah et al. (2016)
Farnesyl diphosphate synthase, δ-guaiene synthase, Type 1 Isopentenyl diphosphate isomerase, acetoacetyl-CoA ligase genes	Farnesyl diphosphate synthase, δ -guaiene synthase, Type 1 Isopentenyl diphosphate isomerase, acetoacetyl-CoA ligase genes were co-expressed in δ -guaiene in mevalo- nate pathway engineered <i>E. coli</i>	Fragrant δ -guaiene (19) synthesis was increased 30–42 μ g/mL in the culture in addition of mevalonolactone.	Kurosaki et al. (2016)
Genes viz., WRKY, β -1-3-glucanase, actin and ubiquitin cDNAs	Total RNA was extracted from mechanically wounded agarwood tree at 4 hour inter- vals, 24 hour for 30 days and gene expres- sion was analysed by qRT-PCR.	<i>WRKY</i> expression was recorded 2 times after mechanical wounding of 6 hour (6 fold), 30 days (9 fold) while <i>GLU</i> strongly expressed at 16 hour (22 fold) exhibiting wound induced <i>WRKY</i> , phenylalanine ammonia lyase and β -1-3-glucanase expression for agarwood formation.	Wong et al. (2013)
PAL (Phenyl alanine ammonia-lyase) gene	RNA was extracted from 2 year old wounded seedling and gene fragment were ampli- fied through PCR, cloned in pGEM-T easy vector and were analyzed by BLAST with Genebank database.	Cloned gene fragment showed 92% similarity with <i>PAL</i> exhibiting stress/wound induced phenylpropanoid synthesis in agarwood.	Wong and Mohamed. (2009)

polonicum were used for highest production of marker agarospirol (20) (Chhipa and Kaushik, 2017). However, Fusarium sp. inoculum in tissue culture raised calli showed markers viz., dodecane (108), tetracosane (115) and spiro [4.5] dec-7-ene, 1, 8-dimethyl-4-(1-methylethenyl)-, $[1S-(1\alpha, 4\beta, 5\alpha)]-$ (155) for aroma, farnesol (129), geranylgeraniol acetate (130) as precursor of terpenoid and agarospirol (20) and 8-eudesmol (48) for sesquiterpenes (Sen et al., 2017). Gene expression for the biomarkers for aroma and other secondary metabolites and biosynthetic pathways were reviewed and the most significant findings were furnished. Nearly 25 genes of sesquiterpenoid biosynthetic pathway viz., HMGR, ASS, ADXPS, ADXPR, FPS, WRKY, MYC, MYB, and others were upregulated \leq 41.6 fold in agarwood than healthy wood but the genes for sesquiterpenes synthesis were expressed more in naturally infected tree than manually inoculated tree. Further, TDF-1 (δ -selinene synthase) of oleoresin, TDF-5 (sesquiterpene synthase 4) of δ -guaiene (**19**) (<75%), TDF-3 (1-deoxy-Dxylulose-5-phosphate-synthase) of sesquiterpene backbone, TDF-4 (Farnesyl pyrophosphate synthase) of terpenoid biosynthesis were expressed along with 11 numbers of differentially expressed

transcription derived factors (DE-TDFs) in infected or commercially or therapeutically beneficial agarwood as response to defense (Islam et al., 2020; Islam and Banu, 2021). Cloned gene fragment of wounded plant showed 92% similarity with PAL exhibiting stress or wound induced phenylpropanoid synthesis. Moreover, WRKY was expressed 2 – 9-fold after mechanical wounding of 6 h to 30 days and GLU 22-fold at 16 h exhibiting wound induced phenylalanine ammonia lyase, WRKY and β -1-3-glucanase expression in agarwood formation (Wong and Mohamed, 2009; Wong et al., 2013). Wounding expressed proteins viz., Malate Synthase and Nicotinamide Adenine Dinucleotide Phosphate quinone oxidoreductase subunit 2B, SesTPS1 and GuaiS1 genes in sesquiterpene synthetic pathway in agarwood in Aquilaria malaccensis, A. sinensis, and A. crassna (Azzarina et al., 2016; Lee et al., 2018). Further, genes of KEGG pathways for terpenoids biosynthesis were expressed in in vitro raised calli revealing effect of wounding alike senescence (Siah et al., 2016). Also, fragrant δ -guaiene synthesis in agarwood was increased $30-42 \mu g/mL$ in the culture of engineered *E. coli* with the addition of mevalonolactone (Kurosaki et al., 2016). In-silico analysis of genomics

Fig. 4. Fungal association in agarwood formation from Aquilaria malaccensis with signature biomarkers with potential of immunomodulatory activity.

and transcriptomics data revealed that putative functional terpene synthase genes were associated with stress, light, and hormones in *Aquilaria malaccensis* (Das et al., 2021) [Table 7; Fig. 4]. A thorough investigation is awaited for targeted gene expression in engineered vectors to establish commercial agarwood production.

9. Conclusion and future prospects

The current review found the phytomedicinal uses of agarwood in congruence with immunomodulatory and anti-SARS CoV2 activity by pharmacological evaluation viz., use as anti-histaminic or immunosuppressant agent, use in asthma, cold, itchy throat, blood purification, weakness, neurological disorders, rheumatism, diabetes, cancer, leprosy, diarrhea, and others. Based on the abundance and quality of aroma, the review found the following biomarkers as signature markers in agarwood of A. malaccensis viz., aromadendrene II (10), valencene (43), calarene (54), t-cadinol (49), caryophyllene oxide (25), β -caryophyllene (18), α -eudesmol (46), dodecane (108), tetracosane (115), δ -guaiene (19) and others. The pharmacological evaluation showed immunomodulatory, anti-inflammatory activity exerted by the biomarkers viz., 1α , 7α -dihydroxy-80x0-4 α H, 5α H-guaia-9 (10),11(13)-dien-12-oate (8), phytol (55), n-hexadecanoic acid (68), and phorbol esters (58), whereas biomarkers with in-silico potential against SARS-Cov2 were viz., caryophyllene oxide (25), octacosane (113), heneicosane (110), α -santalol (47), agarospirol (20), and jinkoh-eremol (51), hinesol (30) and others. Caryophyllene oxide (25) showed in-silico high binding affinity with 3CLpro, ADP ribose phosphatase of NSP3, RNA binding protein of NSP9, and RDRP of SARS CoV2. Caryophyllene oxide also stimulated TNF α , chemotherapeutic agents induced apoptosis and anti-invasive effect by suppressing NF-_{kB} in vitro. Markers like, agarospirol (20), and jinkoh-eremol (51), showed high docking scores and suppressed the release of IL-1 β , IL-6, and TNF- α comparable to anti-inflammatory drug *in vitro*. Thus, agarospirol (20) exhibited neuroleptic, antinociceptic activity in vivo and anti-inflammatory potential both in silico and in vitro. Moreover, RDRP, Spike protein S1, and main protease enzyme binding score by octacosane (113), and heneicosane (110) were comparable to standard drugs.

The following significant biological activity of A. malaccensis in respect to immunity found in the review were viz., methanolic and water extracts of leaves at 50 mg / kg b.w. brought down blood glucose level to normal range in diabetic mice model. The neuroleptic activity exhibited by biomarkers Jinkoh-eremol (51) and agarospirol (20) whereas the anxiolytic effect was exhibited by buagafuran (65) in the human clinical trial. The wood ethanolic extract showed ZoI 20 mm against Staphylococcus aureus while the wood oil fraction exhibited cytotoxicity with IC₅₀ value $< 4 \mu g/mL$ against the HCT 116 cell line. However, in vitro, in vivo experiments lacked standard guidelines on herbal products research viz., used nonpolar solvents, lacked MIC, devoid of the bioactive markers, positive controls, short study duration, lacked cytotoxicity assay in normal cell line which required to be supplemented for their translational use in human therapeutics addressing efficacy, safety, tolerability, bioavailabity, drug interaction, toxicity, adverse effect and others (Izzo et al., 2016; Izzo et al., 2020; Andrew and Izzo, 2017).

The review found the associated fungi in agarwood formation viz., Alternaria, Cladosporium, Curvularia, Fusarium, Phaeoacremonium, Trichoderma, and others. Fusarium sp. inoculum raised calli showed the presence of markers viz., dodecane (108), tetracosane (115), and spiro [4.5] dec-7-ene, 1, 8-dimethyl-4-(1-methylethenyl)-, [1S-(1 α , $(4\beta, 5\alpha)$]- (155), farnesol (129), geranylgeraniol acetate (130), agarospirol (20), 8-eudesmol (48) for aroma, terpenoids, and sesquiterpenes. Several genes WRKY, PAL, GLU were expressed during the formation of agarwood as a response to fungal infection, mechanical damage, stress as a defensive mechanism viz., defense responsive transcription-derived factors of oleoresin, sesquiterpene backbone, and terpenoid biosynthesis viz., for aroma δ -guaiene (19), dodecane (108), tetracosane (115), for terpenoids and sesquiterpenes agarospirol (20), 8-eudesmol (48), farnesol (129), and geranylgeraniol acetate (130). The genes of sesquiterpenoid biosynthetic pathway were upregulated in agarwood compared to healthy wood. But the genes for sesquiterpene synthesis for aroma were expressed more in the naturally infected tree than an artificially inoculated tree. Cloned gene fragment of the wounded plant showed wound-induced phenylalanine ammonia lyase, WRKY, and β -1-3-glucanase expression whereas, genes of KEGG pathways for terpenoid biosynthesis exhibited the effect alike senescence. The synthesis of aroma marker

 δ -guaiene, was increased in culture of engineered *E. coli* by adding mevalonolactone. Biomarker of Chinese agarwood inhibited B cell activating factor through downregulating phosphorylation of NF-_{kB} _P65, STAT3, and Akt via Erk 1/2 and Akt pathway showing potential in autoimmune diseases.

The futuristic scope lies on pathway-guided targeted gene expression in engineered vectors to establish commercial agarwood production maintaining the quality aroma and therapeutic effect by retaining the effective biomarkers.

Authors' contribution

Prasanna Sarmah: Retrieving references, redraw biomarkers using software, preparation of figures, tables, writing -original draft (major part); Bikas Das: retrieving references, preparation of tables, writing -original draft (part); Jadumoni Saikia: redraw biomarkers using software, preparation of figures, tables, writing -original draft (part), review; Parthapratim Konwar: retrieving references, review - (part); Kalpataru Dutta Mudoi, Siddhartha Proteem Saikia: review - (part); Dipanwita Banik: Conceptualization, methodology, supervision, tables, figures, writing – review, editing, and final draft.

Declaration of Competing Interest

There is no conflict of interests among the authors.

Acknowledgments

The study was funded by the Council of Scientific and Industrial Research, Ministry of Science & Technology, Govt. of India, New Delhi under CSIR FBR project MLP0041. The first four authors acknowledge Academy of Scientific and Innovative Research (AcSIR), Ghaziabad -201002, India for providing the platform to carry out the work. All the authors acknowledge the Director, Botanical Survey of India and In-charge of Itanagar Circle, Arunachal Pradesh; Eastern Circle, Shillong, Meghalaya; Sikkim Himalayan Circle, Gangtok, BSI for consulting herbarium specimens, and, the Director, CSIR-NEIST for all the logistics and support; and CSIR, Govt. of India, New Delhi for overall support.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.sajb.2022.10.020.

References

- Adam, A.Z.B., 2017. Chemical Composition, Antibacterial and Toxicity Activities of Aquilaria Leaves from Three Commonly Planted Species in Malaysia. Thesis Submitted to the School of Graduate Studies Universiti Putra Malaysia.
- Adam, A.Z., Lee, S.Y., Mohamed, R., 2017. Pharmacological properties of agarwood tea derived from *Aquilaria (Thymelaeaceae)* leaves: an emerging contemporary herbal drink. J. Herb. Med. 10, 37–44.
 Adam, A.Z., Tajuddin, S.N., Sudmoon, R., Chaveerach, A., Abdullah, U.H., Mahat, M.N.,
- Adam, A.Z., Tajuddin, S.N., Sudmoon, R., Chaveerach, A., Abdullah, U.H., Mahat, M.N., Mohamed, R., 2018. Chemical constituents and toxicity effects of leaves from several agarwood tree species (*Aquilaria*). J. Trop. For. Sci. 30 (3), 342–353. https://doi. org/10.26525/jtfs2018.30.3.342353.
- Ahmaed, D.T., Mohammed, M., Masaad, A.M., Tajuddin, S.N., 2017. Investigation of agarwood compounds in *Aquilaria malaccensis* & *Aquilaria rostrata* chipwood by using solid phase microextraction. Biomed. J. Sci. Tech. Res. 1 (6), 1–8.
- Ahn, S., Ma, C.T., Choi, J.M., An, S., Lee, M., Le, T.H.V., Noh, M., 2019. Adiponectin-secretion-promoting phenylethylchromones from the agarwood of *Aquilaria malaccen*sis. J. Nat. Prod. 82 (2), 259–264. https://doi.org/10.1021/acs.jnatprod.8b00635.
- Alam, J., Mujahid, M., Jahan, Y., Bagga, P., Rahman, M.A., 2017. Hepatoprotective potential of ethanolic extract of *Aquilaria agallocha* leaves against paracetamol induced hepatotoxicity in SD rats. J. Tradit. Complement. Med. 7 (1), 9–13. https://doi.org/ 10.1016/j.jtcme.2015.12.006.
- Andrew, R., Izzo, A.A., 2017. Principles of pharmacological research of nutraceuticals. Br. J. Pharmacol. 174 (11), 1177–1194. https://doi.org/10.1111/bph.13779.

- Apridamayanti, P., Sari, R., 2019. FICI value of Aquilaria malaccensis leaves extract and amoxicillin against Proteus mirabilis and Pseudomonas aeruginosa. Kartika: Jurnal Ilmiah Farmasi 6 (2), 86–90.
- Ayuni, N., Faridah, Q.Z., Anisa, S.A., Rosimah, N., Norhidayah, M.H., Shamsul, K, 2018. Ethnobotanical documentation of plants used by the Jahai tribe in Royal Belum State Park, Perak. Unravelling nature's treasures & secrets: current species of interest, 2. In: Proceedings of the 15th Seminar on Medicinal and Aromatic Plants (MAPS-15), FRIM Proceedings No. 16. Forest Research Institute Malaysia. 52109 Kepong, Selangor.
- Asia-Taipei, T. E., Asia, T. S. 2005. The Trade and Use of Agarwood in Taiwan, Province of China. Report compiled by TRAFFIC East Asia-Taipei and TRAFFIC Southeast Asia For the CITES Secretariat.
- Azzarina, A.B., Mohamed, R., Lee, S.Y., Nazre, M., 2016. Temporal and spatial expression of terpene synthase genes associated with agarwood formation in *Aquilaria malaccensis* Lam. N.Z.J. For. Sci. 46 (1), 1–13. https://doi.org/10.1186/s40490-016-0068-9.
- Azren, P.D., Lee, S.Y., Emang, D., Mohamed, R., 2019. History and perspectives of induction technology for agarwood production from cultivated *Aquilaria* in Asia: a review. J. For. Res. 30 (1), 1–11. https://doi.org/10.1007/s11676-018-0627-4.
- Balkrishna, A., Joshi, B., Srivastava, A., Shankar, R., Vashistha, R.K., Kumar, A., Mishra, R.K., 2021. Medicinal plants of Seijosa circle, Pakke-Kessang district, Arunachal Pradesh, India. Indian J. Nat. Prod. Resour. 12 (1), 101–115.
- Barman, R., Bora, P.K., Saikia, J., Kemprai, P., Saikia, S.P., Haldar, S., Banik, D., 2021. Nutmegs and wild nutmegs: an update on ethnomedicines, phytochemicals, pharmacology, and toxicity of the Myristicaceae species. Phytother. Res. 35 (9), 4632– 4659. https://doi.org/10.1002/ptr.7098.
- Basumatary, N., Teron, R., Saikia, M., 2014. Ethnomedicinal practices of the Bodo-Kachari tribe of Karbi Anglong district of Assam. Int. J. Life Sci. Biotechnol. Pharma Res. 3 (1), 161–167.
- Batubara, R., Surjanto, S.T., Ginting, H., 2016. Keamanan teh gaharu (Aquilaria malaccensis) dari pohon induksi melalui uji toksisitas subkronik oral 90 hari. Biofarmasi 14 (2), 69–76.
- Batubara, R., Wirjosentono, B., Siewgar, A.H., Harahap, U., Tamarin, 2021. Bioactive compounds of ethanol extract from leaves and antimicrobial activity against bacteria and fungi growing in skin. Biodiversitas 22, 2884–2890.
- Benedict, A.C., 2009. Extraction of the Essential Oil of Aquilaria Malaccensis (Gaharu) using Hydro-Distillation and Solvent Extraction Methods (Doctoral dissertation, UMP). Faculty of Chemical & Natural Resources Engineering Universiti Malaysia Pahang.
- Blanchette, R.A., Jurgens, J.A., Beek, H.H.V., 2015. Growing Aquilaria and production of Agarwood in hill agro-ecosystems. Integrated Land Use Management in the Eastern Himalayas. Akansha Publishing House Delhi, pp. 66–82. edited by Eckman K & Ralte L.
- Bhuiyan, M.N.I., Begum, J., Bhuiyan, M.N.H., 2009. Analysis of essential oil of eaglewood tree (Aquilaria agallocha Roxb.) by gas chromatography-mass spectrometry. Bangladesh J. Pharmacol. 4 (1), 24–28.
- Bourhia, M., Abdelaziz Shahat, A., Mohammed Almarfadi, O., Ali Naser, F., Mostafa Abdelmageed, W., Ait Haj Said, A., Khlil, N., 2019. Ethnopharmacological survey of herbal remedies used for the treatment of cancer in the greater Casablanca-Morocco. Evid.-Based Complement. Altern. Med. 1–9. https://doi.org/ 10.1155/2019/1613457.
- Changkija, S., 1994. An ethnobotanical folktale of the Ao Naga in India. Asian Folkl Stud. 53, 255–258.
- Chhipa, H., Kaushik, N., 2017. Fungal and bacterial diversity isolated from Aquilaria malaccensis tree and soil, induces agarospirol formation within 3 months after artificial infection. Front. Microbiol. 8, 1286. https://doi.org/10.3389/ fmicb.2017.01286.
- Chitre, T., Bhutada, P., Nandakumar, K., Somani, R., Miniyar, P., Mundhada, Y., Jain, K., 2007. Analgesic and anti-inflammatory activity of heartwood of *Aquilaria agallocha* in laboratory animals. Pharmacologyonline 1, 288–298.
- CITES, 1994. The 9th CITES Conference of the Parties. Inclusion of Species in Appendix II, Fort Lauderdale, Florida, United States.
- CITES, 2003. Review of Significant Trade: Aquilaria malaccensis. PC14 Doc. 9.2.2 Annex 2. Das, A., Begum, K., Akhtar, S., Ahmed, R., Kulkarni, R., Banu, S., 2021. Genome-wide detection and classification of terpene synthase genes in Aquilaria agallochum. Physiol. Mol. Biol. Plants 27 (8), 1711–1729. https://doi.org/10.1007/s12298-021-01040-z.
- Debnath, A., Saha, A.K., Das, P., 2016. Arbuscular mycorrhizal association in some ethnobotanical plants of Tripura. J. Mycopathol. Res. 54 (2), 239–244.
- Derouiche, S., Degachi, O., Gharbi, K., 2019. Phytochemistry analysis and modulatory activity of *Portulaca oleracea* and *Aquilaria malaccensis* extracts against high fructose and high fat diet induced immune cells alteration and heart lipid peroxidation in Rats. Int. Res. J. Biol. Sci. 8 (4), 6–11.
- Duru, C.E., Duru, I.A., Adegboyega, A.E., 2021. In-silico identification of compounds from Nigella sativa seed oil as potential inhibitors of SARS-CoV-2 targets. Bull. Natl. Res. Cent. 45 (1), 1–13. https://doi.org/10.1186/s42269-021-00517-x.
- Dyary, H.O., Arifah, A.K., Sharma, R.S., Rasedee, A., Mohd-Aspollah, M.S., Zakaria, Z.A., Somchit, M.N., 2014. Antitrypanosomal screening and cytotoxic effects of selected medicinal plants. Trop. Biomed. 31 (1), 89–96.
- Eissa, M., Hashim, Y.Z.H., Zainurin, N., 2018. Anti-inflammatory activity exhibited by supercritical fluid extract of *Aquilaria malaccensis* Leaves. Products and Services 2018 (i-CHIPS 2018). International Conference on Halal Innovation in Products and Services.
- Eissa, M.A., Hashim, Y.Z.H., El-Kersh, D.M., Abd-Azziz, S.S., Salleh, H.M., Isa, M.L.M., Abd Warif, N.M., 2020. Metabolite profiling of *Aquilaria malaccensis* leaf extract using liquid chromatography-Q-TOF-Mass spectrometry and investigation of its potential antilipoxygenase activity *in-vitro*. Processes 8 (2), 202. https://doi.org/ 10.3390/pr8020202.

- Elwakil, B.H., Shaaban, M.M., Bekhit, A.A., El-Naggar, M.Y., Olama, Z.A., 2021. Potential anti-COVID-19 activity of Egyptian propolis using computational modeling. Fut. Virol. 16 (2), 107–116. https://doi.org/10.2217/fvl-2020-0329.Esha, R.T., Chowdhury, M.R., Adhikary, S., Haque, K.M.A., Acharjee, M., Nurunnabi, M.,
- Esha, R.T., Chowdhury, M.R., Adhikary, S., Haque, K.M.A., Acharjee, M., Nurunnabi, M., Rahmatullah, M., 2012. Medicinal plants used by tribal medicinal practitioners of three clans of the Chakma tribe residing in Rangamati district, Bangladesh. Am.-Eurasian J. Sustain. Agric. 6 (2), 74–84.
- Eurlings, M.C.M., Gravendeel, B., 2005. TrnL-trnF sequence data imply paraphyly of Aquilaria and Gyrinops (Thymelaeaceae) and provide new perspectives for agarwood identification. Plant Syst. Evol. 254 (1), 1–12.
- Faizal, A., Esyanti, R.R., Aulianisa, E.N., Santoso, E., Turjaman, M., 2017. Formation of agarwood from Aquilaria malaccensis in response to inoculation of local strains of Fusarium solani. Trees 31 (1), 189–197. https://doi.org/10.1007/s00468-016-1471-9.
- Fayyadh, A.A., Ibrahim, H., Zain, H.H.M., Al-Qubaisi, M.S., 2020. The effect of agarwood leaf extracts on blood glucose level of type II diabetes mellitus in ICR male mice. Res. J. Pharm. Technol. 13 (1), 237–242. https://doi.org/10.5958/0974-360X.2020.00048.7.
- Gameil, A.H.M., Hashim, Y.Z.H.Y., Zainurin, N.A.A., Salleh, H.M., Abdullah, N.S., 2019. Anticancer potential and chemical profile of agarwood hydrosol. MJFAS 15 (5), 761–766.
- Groom, N., 1981. Frankincense and myrrh. a study of the Arabian incense trade. London, Longman
- Grosvenor, P.W., Gothard, P.K., McWilliam, N.C., Supriono, A., Gray, D.O., 1995. Medicinal plants from riau province, sumatra, Indonesia. Part 1: uses. J. Ethnopharmacol. 45 (2), 75–95. https://doi.org/10.1016/0378-8741(94)01209-I.
- Guo, R., Li, J., Gu, Y., Li, Y., Li, S., Gao, X., Tu, P., 2019. GYF-21, an epoxide 2(2phenethyl) chromone derivative, suppresses dysfunction of B cells mainly via inhibiting BAFF activated signaling pathways. Int. Immunopharmacol. 67, 473–482. https://doi. org/10.1016/j.intimp.2018.12.048.
- Gurrapu, S., Mamidala, E., 2016. Medicinal plants used by traditional medicine practitioners in the management of HIV/AIDS-related diseases in tribal areas of Adilabad district, Telangana region. AJMS 2 (1), 239–245.
- Hamouda, A.F., 2019. A biochemical study of agarwood on methanol injection in rat. J. Drug Alcohol Res. 8 (1), 1–14.
- Harvey-Brown, Y., 2018. Aquilaria malaccensis. The IUCN red list of threatened species 2018: e.T32056A2810130. https://doi.org/10.2305/IUCN.UK.2018-1.RLTS. T32056A2810130.en. (Accessed on 10 January 2022)
- Hashim, Y.Z.H.Y., Phirdaous, A., Azura, A., 2014. Screening of anticancer activity from agarwood essential oil. Pharmacogn. Res. 6 (3), 191. https://doi.org/10.4103/0974-8490.132593.
- Hamzah, A.B., Atikah, N., 2018. Evaluation of Potential of Aquilaria malaccensis for Heavy Metals Phytoremediation in Contaminated Soil. Universiti putra Malaysia.
- Hashim, Y.Z.H.Y., Jamil, M.A.M., Jamal, P., Zainurin, N.A.A., Azziz, S.S.S.A., 2020. Hydrodistillation and Soxhlet extraction of Agarwood leaf extract from Aquilaria malaccensis. MJFAS 15 (6), 842–846.
- Hegde, K., Fathima Jazeela, M., Vijetha Poojary, K., Satish, S., 2018. Anticancer potentials of the plant Aquilaria malaccensis leaves. Indian J. Pharmacol. 5 (3), 135–140.
- Herber, B.E., 2003. Thymelaeaceae. Flowering Plants. Dicotyledons. Springer, Berlin, Heidelberg, pp. 373–396. https://doi.org/10.1007/978-3-662-07255-4_45.
- Hooker, J.D., 1886. Aquilaria, Flora of British India, 5. L. Reeve & Co., Ltd., Kent, pp. 199–200.
- Hou, D., 1960. Thymelaeaceae. Flora Malesiana-Series 1. Spermatophyta. 6(1), 1–48. Hou, D., 1964. Notes on some Asiatic species of *Aquilaria* (Thymelaceae). Blumea 12 (2),
- 285–288. Ibrahim, A.H., Al-Rawi, S.S., Majid, A.A., Rahman, N.A., Abo-Salah, K.M., Ab Kadir, M.O.,
- 2011. Separation and fractionation of Aquilaria malaccensis oil using supercritical fluid extraction and the cytotoxic properties of the extracted oil. Proc. Food Sci. 1, 1953–1959. https://doi.org/10.1016/j.profoo.2011.09.287.
- Islam, M.K., Saha, S., Mahmud, I., Mohamad, K., Awang, K., Uddin, S.J., Shilpi, J.A., 2014. An ethnobotanical study of medicinal plants used by tribal and native people of Madhupur forest area, Bangladesh. J. Ethnopharmacol. 151 (2), 921–930. https:// doi.org/10.1016/j.jep.2013.11.056.
- Islam, M., Bhau, B.S., Banu, S., 2020. Gene expression analysis associated with agarwood formation in Aquilaria malaccensis. Plant Physiol. Rep. 25 (2), 304–314.
- Islam, M., Banu, S., 2021. Transcript profiling leads to biomarker identification for agarwood resin-loaded Aquilaria malaccensis. Trees 35 (6), 2119–2132. https://doi.org/ 10.1007/s00468-021-02180-1.
- Ismail, N., Rahiman, M.H.F., Taib, M.N., Ibrahim, M., Zareen, S., Tajuddin, S.N., 2015. A review on agarwood and its quality determination. 2015 IEEE 6th Control and System Graduate Research Colloquium (ICSGRC), pp. 103–108.Ismail, F., Wahab, A.Y.A., Isa, M.L.M., Muhammad, H., Ismail, R.A.S.R., Razak, R.N.H.A.,
- Ismail, F., Wahab, A.Y.A., Isa, M.L.M., Muhammad, H., Ismail, R.A.S.R., Razak, R.N.H.A., 2019. The effects of *Aquilaria malaccensis* leaves aqueous extract on sperm of Sprague Dawley Rats towards early embryogenesis. Int. Med. J. Malays 18 (2), 59– 68. https://doi.org/10.31436/imjm.v18i2.96.
- Izzo, A.A., Hoon-Kim, S., Radhakrishnan, R., Williamson, E.M., 2016. A critical approach to evaluating clinical efficacy, adverse events and drug interactions of herbal remedies. Phytother. Res. 30 (5), 691–700. https://doi.org/10.1002/ptr.5591.
- Izzo, A.A., Teixeira, M., Alexander, S.P.H., Cirino, G., Docherty, J.R., George, C.H., Ahluwalia, A., 2020. A practical guide for transparent reporting of research on natural products in the British Journal of Pharmacology: Reproducibility of natural product research. Br. J. Pharmacol. 177 (10), 2169–2178. https://doi.org/10.1111/ bph.15054.
- Jahan, R., Paul, A.K., Jannat, K., Rahmatullah, M., 2021. Plant essential oils: possible COVID-19 therapeutics. Nat. Prod. Commun. 16 (2). https://doi.org/10.1177/ 1934578X21996149 1934578X21996149.
- Jamir, K., Tsurho, K., 2016. Documentation of medicinal plants and its uses by Phom tribe of Longleng district, Nagaland. J. Med. Plants Stud. 4 (6), 167–172.

- Jamir, N.S., Takatemjen, Limasemba, 2010. Traditional knowledge of Lotha-Naga in wokha district, Nagaland. IJTK 9 (1), 45-48.
- Jayachandran, K.S.I., Sekar, I., Parthiban, K.J., Amirthan, D., Suresh, K.K., 2014. Analysis of different grades of Agarwood (Aquilaria malaccensis Lamk.) oil through GC-MS. Indian J. Nat. Prod. Resour. 5 (1), 44–47.
- Jong, P.L., Tsan, P. Mohamed, R. 2014. Gas chromatography-mass spectrometry analysis of agarwood extracts from mature and juvenile *Aquilaria malaccensis*. Int. J. Agric. Biol, 16. 644–648.
- Kao, W.Y., Hsiang, C.Y., Ho, S.C., Ho, T.Y., Lee, K.T., 2018. Chemical profiles of incense smoke ingredients from agarwood by headspace gas chromatography-tandem mass spectrometry. Molecules 23 (11), 2969. https://doi.org/10.3390/molecules23112969.
- Kao, W.Y., Hsiang, C.Y., Ho, S.C., Ho, T.Y., Lee, K.T., 2021. Novel serotonin-boosting effect of incense smoke from Kynam agarwood in mice: the involvement of multiple neuroactive pathways. J. Ethnopharmacol. 275, 114069. https://doi.org/10.1016/j. jep.2021.114069.
- Keeren, S.R., Arifin, A., Hazandy, A.H., Karam, D.S., Shamshuddin, J., Aiza-shaliha, J., Zhen, W., 2013. Assessment of heavy metals uptake and translocation by Aquilaria malaccensis planted in soils containing sewage sludge. Am. J. Appl. Sci. 10 (9), 952–964.
- Khan, M.R., Kikim, A., Yadava, P.S., 2015. Conservation of indigenous wild edible plants used by different communities of Kangchup Hills, Senapati, North East India. IJBSM 6 (6), 680–689 10.0.23.70/0976-4038.2015.00105.0.
- Kim, C., Cho, S.K., Kim, K.D., Nam, D., Chung, W.S., Jang, H.J., Ahn, K.S., 2014. β-Caryophyllene oxide potentiates TNFα-induced apoptosis and inhibits invasion through down-modulation of NF-κB-regulated gene products. Apoptosis 19 (4), 708–718. https://doi.org/10.1007/s10495-013-0957-9.
- Korinek, M., Wagh, V.D., Lo, I.W., Hsu, Y.M., Hsu, H.Y., Hwang, T.L., Chang, F.R., 2016. Antiallergic phorbol ester from the seeds of *Aquilaria malaccensis*. Int. J. Mol. Sci. 17 (3), 398. https://doi.org/10.3390/ijms17030398.
- Kuo, P.C., Li, Y.C., Yang, M.L., Tzen, J.T., 2020. A feasible UHPLC-MS/MS method for concurrent quantification of 10 bioactive principles in Aquilaria leaf tea by the multiple reaction monitoring analytical mode. Phytochem. Anal. 31 (5), 583–593. https://doi.org/10.1002/pca.2923.
- Kurosaki, F., Kato, T., Misawa, N., Taura, F., 2016. Efficient production of δ-guaiene, an aroma sesquiterpene compound accumulated in agarwood, by mevalonate pathway-engineered *Escherichia coli* cells. ABB 7 (11), 435.
- Lamarck, J., Poiret, J., 1783. Aquilaria malaccensis. Encyclopedie Methodique. Botanique 1 (1), 49.
- Lee, S.Y., Mohamed, R., 2016. The origin and domestication of Aquilaria, an important agarwood-producing genus. Agarwood. Springer, Singapore, pp. 1–20. https://doi. org/10.1007/978-981-10-0833-7.
- Lee, S.Y., Syazwan, S.A., Lamasudin, D.U., Mohamed, R., 2018. Differentially expressed wound-response-related proteins from a major agarwood-producing tree, *Aquilaria malaccensis* Lam. identified via 2-D electrophoresis. Curr. Proteom. 15 (4), 291–298. https://doi.org/10.2174/1570164615666180727095937.
- Limhengha, S., Mahathaninwong, N., Chucheep, T., Karrila, S., Tipayanon, T., 2021. Making blends of agarwood waste with empty palm bunches or rubber wood sawdust for pelletized biofuels. BioResources 16 (2), 2971–2986.
- Ma, C.T., Ly, T.L., Van Le, T.H., Tran, T.V.A., Kwon, S.W., Park, J.H., 2021. Sesquiterpene derivatives from the agarwood of *Aquilaria malaccensis* and their anti-inflammatory effects on NO production of macrophage RAW 264.7 cells. Phytochemistry 183, 112630. https://doi.org/10.1016/j.phytochem.2020.112630.
- Majumdar, K., Datta, B.K., 2009. Folklore herbal formulations by the tribes of Tripura. Proceeding on Traditional healing practices in North east India. North Eastern Institute of folk Medicine (NEIFM), Pasighat, Arunachal Pradesh, pp. 155–162.
- Mei, W.L., Yang, D.L., Wang, H., Yang, J.L., Zeng, Y.B., Guo, Z.K., Dai, H.F., 2013. Characterization and determination of 2-(2-phenylethyl) chromones in agarwood by GC-MS. Molecules 18 (10), 12324–12345. https://doi.org/10.3390/molecules181012324.
- Merzouki, A., Ed-Derfoufi, F., Mesa, J.M., 2000. Contribution to the knowledge of Rifian traditional medicine. II: folk medicine in Ksar Lakbir district (NW Morocco). Fitoterapia 71 (3), 278–307. https://doi.org/10.3390/molecules181012324.
 Mir, A.H., Roy, D.K., Upadhaya, K., 2017. Taxonomy, recollection and conservation
- Mir, A.H., Roy, D.K., Upadhaya, K., 2017. Taxonomy, recollection and conservation implications of *Aquilaria khasiana* (Thymelaeaceae): an endemic and threatened species of India. Rheedea 27 (2), 85–89.
- Mohamed, R., Jong, P.L., Zali, M.S., 2010. Fungal diversity in wounded stems of Aquilaria malaccensis. Fungal Divers 43 (1), 67–74. https://doi.org/10.1007/s13225-010-0039-z.
- Mohamed, R., Jong, P.L., Kamziah, A.K., 2014. Fungal inoculation induces agarwood in young Aquilaria malaccensis trees in the nursery. J. For. Res. 25 (1), 201–204. https://doi.org/10.1007/s11676-013-0395-0.
- Muhd Rodhi, M.N., Ku Hamid, K.H., Hamzah, F., Kamarul Bahari, N.S., Abdul Rahman, N.A., 2020. Inhibition of pancreatic lipase by gallic acid and quercetin equivalent in ultrasonicated Malaysian grown Aquilaria spp. leaves of different particle size. MJCET 3 (2), 1–10.
- Musa, N.H.C., Zain, H.H.M., Ibrahim, H., Jamil, N.N.M., 2019. Evaluation of acute and subacute oral toxicity effect of *Aquilaria malaccensis* leaves aqueous extract in male ICR mice. Nat. Prod. Sci. 25 (2), 157–164. https://doi.org/10.24191/mjcet.v3i2.10942.
- Musrifani, A.D., Siregar, Y., Ichwan, M., 2020. Effects of ethanol extract of aloes (Aquilaria malaccesensis) leaves in lowering blood sugar levels of mice after maltose loading. IOSR JDMS 19 (3), 36–39.
- Nadilah, W.A.W., Ali, A.M., Mamat, W.N.A.W., Mahmod, N.H., 2019. Evaluation of DPPH free radical scavenging, α-glucosidase inhibitory, and antimicrobial activities of *Aquilaria malaccensis* leaf extracts. J. Agrobiotechnol. 10 (1), 36–45.
- Naef, R., 2011. The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: a review. Flavour Fragr. J. 26 (2), 73–87. https:// doi.org/10.1002/ffj.2034.

Nasution, A.A., Siregar, U.J., Turjaman, M., 2020. Identification of chemical compounds in agarwood-producing species *Aquilaria malaccensis* and *Gyrinops versteegii*. J. For. Res. 31 (4), 1371–1380. https://doi.org/10.1007/s11676-018-00875-9.

- Nath, S.C., Saikia, N., 2002. Indigenous knowledge on utility and utilitarian aspects of *Aquilaria malaccensis* Lamk. in northeast India. IJTK 1 (1), 47–58.
- Norfatirah, M.S., Tajuddin, S.N., Chemat, F., Rajan, J., Yusoff, M.M., 2013. Comparison of microwave-assisted extraction and hydrodistillation method in the extraction of essential oils from *Aquilaria malaccensis* (Agarwood) Oil. Open Conf. Proc. J. 4 (1), 227.
- Nurraihana, H., Norfarizan-Hanoon, N.A., Hasmah, A., Norsuhana, A.H., Fatan, H.Y., 2016. Ethnomedical survey of aborigines medicinal plants in Gua Musang, Kelantan, Malaysia. J. Environ. Health. 7 (1), 59–76.
- Okugawa, H., Ueda, R., Matsumoto, K., Kawanishi, K., Kato, A., 1993. Effects of agarwood extracts on the central nervous system in mice. Planta Med. 59 (01), 32–36.
- Okugawa, H., Ueda, R., Matsumoto, K., Kawanishi, K., Kato, A., 1996. Effect of jinkoheremol and agarospirol from agarwood on the central nervous system in mice. Planta Med. 62 (01), 2–6.
- Partha, P., 2014. Ethnobotany of the Laleng (Patra) Community in Bangladesh. J. Pharmacogn. Phytochem. 2 (6), 173–184.
- Peng, C.S., Osman, M.F., Bahari, N., Zakaria, R., Rahim, K.A., 2015. Agarwood inducement technology: a method for producing oil grade agarwood in cultivated Aquilaria malaccensis Lamk. J. Agrobiotechnol. 6, 1–16.
- Premalatha, K., Kalra, A., 2013. Molecular phylogenetic identification of endophytic fungi isolated from resinous and healthy wood of *Aquilaria malaccensis*, a red listed and highly exploited medicinal tree. Fungal Ecol. 6 (3), 205–211. https://doi.org/ 10.1016/j.funeco.2013.01.005.
- Quisumbing, E., 1946. A critical study of Philippine species of the tribe Aquilarieae, family Thymelaeaceae. J. Arnold Arbor. 27 (4), 401–407.
- Raghuvanshi, M., Pandya, P., Joshi, R.R., 2004. Yagyopathic herbal treatment of pulmonary tuberculosis symptoms: a clinical trial. Altern. Complement. Ther. 10 (2), 101–105. https://doi.org/10.1089/107628004773933352.
- Rahman, H., Vakati, K., Eswaraiah, M.C., 2012. *In-vivo* and *In-vitro* anti-inflammatory activity of *Aquilaria agallocha* oil. IJBMSP 2 (1), 7–10.
- Rahmatullah, M., Azam, M.N.K., Rahman, M.M., Seraj, S., Mahal, M.J., Mou, S.M., Chowdhury, M.H., 2011. A survey of medicinal plants used by Garo and non-Garo traditional medicinal practitioners in two villages of Tangail district, Bangladesh. Am. -Eurasian J. Sustain. Agric. 5, 350–357.
- Rai, P.K., Lalramnghinglova, H., 2010. Ethnomedicinal plants from agroforestry systems and home gardens of Mizoram, North East India. Herba Pol. 56 (3), 81–93.
- Rajagopal, P.L., Premaletha, K., Sreejith, K.R., 2016. Antidiabetic potential of the flowers of *Aquilaria agallocha* Roxb. Worldwide J. Multidiscip. Res. Dev. 2 (4), 22–24.
- Razak, R.N.H.A., Ismail, F., Isa, M.L.M., Wahab, A.Y.A., Muhammad, H., Ramli, R., Ismail, R.A.S.R., 2019. Ameliorative effects of *Aquilaria malaccensis* leaves aqueous extract on reproductive toxicity induced by cyclophosphamide in male rats. MJMS 26 (1), 44–57. https://doi.org/10.21315/mjms2019.26.1.4.
- Razak, R.N.H.A., Rahmana, S.A., Hamdanb, A.H., Ramli, R., Isa, M.L.M., Muhammad, H., Hassan, N.F., 2018. Evaluation of acute and sub-acute oral toxicity of the aqueous extract of *Aquilaria malaccensis* leaves in Sprague Dawley rats. Asia Pac. J. Mol. Biol. Biotechnol. 27 (1), 20–32.
- Rudiana, T., Merru, E.S.Y., Hendrawati, H., Sukandar, D., 2021. Characterization and anticancer activity from Gaharu (*Aquilaria malaccensis*) stem bark extract. EduChemia (Jurnal Kimia dan Pendidikan) 6 (2), 197–207.
- Saikia, A.P., Ryakala, V.K., Sharma, P., Goswami, P., Bora, U., 2006. Ethnobotany of medicinal plants used by Assamese people for various skin ailments and cosmetics. J. Ethnopharmacol. 106 (2), 149–157. https://doi.org/10.1016/j.jep.2005.11.033.
- Samadi, M., Abidin, Z.Z., Yunus, R., Biak, D.R.A., Yoshida, H., Lok, E.H., 2017. Assessing the kinetic model of hydro-distillation and chemical composition of *Aquilaria malaccensis* leaves essential oil. Chin. J. Chem. Eng. 25 (2), 216–222. https://doi.org/ 10.1016/j.cjche.2016.09.006.
- Samadi, M., Zainal Abidin, Z., Yoshida, H., Yunus, R., Awang Biak, D.R., Lee, C.H., Lok, E.H., 2020. Subcritical water extraction of essential oil from Aquilaria malaccensis leaves. Sep. Sci. Technol. 55 (15), 2779–2798.
- Samir, D., Khaoula, Z., Safa, G., Yahia, K., Anouar, F., 2017. Protective effects of Aristolochia longa and Aquilaria malaccensis against lead induced acute liver injury in rats. J. Acute Dis. 6 (5), 193.
- Sangareswari, M., Parthiban, K.T., Kanna, S.U., Karthiba, L., Saravanakumar, D., 2016. Fungal microbes associated with agarwood formation. Am. J. Plant Sci. 7 (10), 1445.
- Sanglakpam, P., Mathur, R.R., Pandey, A.K., 2012. Ethnobotany of chothe tribe of bishnupur district (Manipur). Indian J. Nat. Prod. Resour. 3 (3), 414–425.
- Sarma, D.R., Sarmah, J., Gupta, A., Mishra, R.K., 2015. Aquilaria malaccensis, an ayurvedic medicinal herb found in Assam—its therapeutical and pharmacological aspect. Indian J. Trop. Biodiv. 23 (2), 218–222.
 Sen, S., Dehingia, M., Talukdar, N.C., Khan, M., 2017. Chemometric analysis reveals links
- Sen, S., Dehingia, M., Talukdar, N.C., Khan, M., 2017. Chemometric analysis reveals links in the formation of fragrant bio-molecules during agarwood (*Aquilaria malaccensis*) and fungal interactions. Sci. Rep. 7 (1), 1–14. https://doi.org/10.1038/srep44406.
- Senarath, W.T.P.S.K., Jayalath, D.T., Buddhapriya, A.N., 2016. Comparison of phytochemicals present in Aquilaria malaccensis Lam. (Agarwood) and Gyrinops walla Gaertn. IJIR 2 (11), 440–443.
- Sharma, B.S., Mahajon, B., Rao, B.C.S., Srikanth, N., 2019. Study protocol of a prospective, openlabel, single-arm, clinical trial to evaluate the efficacy of classical ayurveda medicines in the management of vicharchika (Atopic Eczema). J. Res. Ayurvedic Sci. 3 (1), 27–33.
- Shoeb, M., Begum, S., Nahar, N., 2010. Study of an endophytic fungus from Aquilaria malaccensis Lamk. Bangladesh J. Pharmacol. 5 (1), 21–24.

- Siah, C.H., Namasivayam, P., Mohamed, R., 2016. Transcriptome reveals senescing callus tissue of *Aquilaria malaccensis*, an endangered tropical tree, triggers similar response as wounding with respect to terpenoid biosynthesis. Tree Genet. Genomes 12 (2), 33. https://doi.org/10.1007/s11295-016-0993-z.
- Silalahi, M., Nisyawati, N., Pandiangan, D., 2019. Medicinal plants used by the Batak Toba Tribe in Peadundung Village, North Sumatra, Indonesia. Biodivers. J 20 (2), 510–525.
- Strub, D., Talma, M., Strub, M., Rut, W., Żmudziński, M., Brud, W., Drag, M., 2021. Evaluation of the Inhibitory Potential of Essential Oils and Aromatic Extracts on SARS-CoV-2 Mpro and PLpro. Research square, pp. 1–26.
- Sudeesh, S., 2012. Ethnomedicinal plants used by Malayaraya tribes of Vannapuram village in Idukki, Kerala, India. Indian J. Sci. Technol. 1 (1), 7–11.
- Susandarini, R., Khasanah, U., Rosalia, N., 2021. Ethnobotanical study of plants used as food and for maternal health care by the Malays communities in Kampar Kiri Hulu, Riau, Indonesia. Biodiversitas 22 (6), 3111–3120. https://doi.org/10.13057/biodiv/ d220613.
- Tajuddin, S.N., Yusoff, M.M., 2010. Chemical composition of volatile oils of Aquilaria malaccensis (Thymelaeaceae) from Malaysia. Nat. Prod. Commun. 5 (12), 1965– 1968. https://doi.org/10.1177/1934578X1000501229.
- Tajuddin, S.N., Muhamad, N.S., Yarmo, M.A., Yusoff, M.M., 2013. Characterization of the chemical constituents of agarwood oils from Malaysia by comprehensive twodimensional gas chromatography-time-of-flight mass spectrometry. Mendeleev Commun. 23 (1), 51–52. https://doi.org/10.1016/j.mencom.2013.01.019.
- TKDL, 2001. Traditional Knowledge Digital Library Representative database of TKDL. CSIR & AYUSH http://www.tkdl.res.in/tkdl/langdefault/common/Home.asp? GL=Eng last accessed on 3.3.2022.

Tamuly, K., 2021. Production of biodiesel from agarwood oil. Saudi J. Eng. Technol. 6 (6), 115–117.

- Tuem, K.B., Atey, T.M., 2017. Neuroactive steroids: receptor interactions and responses. Front. Neurol. 8, 442.
- Uddin, M.B., Mukul, S.A., 2012. Ethnomedicinal knowledge of Khasia tribe in Sylhet region, Bangladesh. Indian J. Tropic. Biodiv. 20 (1), 69–76.
- Wagh, V.D., Korinek, M., Lo, I.W., Hsu, Y.M., Chen, S.L., Hsu, H.Y., Chang, F.R., 2017. Inflammation modulatory phorbol esters from the seeds of *Aquilaria malaccensis*. J. Nat. Prod. 80 (5), 1421–1427. https://doi.org/10.1021/acs.jnatprod.6b01096.
- Wang, S., Yu, Z., Wang, C., Wu, C., Guo, P., Wei, J., 2018a. Chemical constituents and pharmacological activity of agarwood and *Aquilaria* plants. Molecules 23 (2), 342. https://doi.org/10.3390/molecules23020342.
- Wang, S., Wang, C., Yu, Z., Wu, C., Peng, D., Liu, X., Wei, J., 2018b. Agarwood essential oil ameliorates restrain stress-induced anxiety and depression by inhibiting HPA axis hyperactivity. Int. J. Mol. Sci. 19 (11), 3468. https://doi.org/10.3390/ijms19113468.
- Wangchuk, P., Yeshi, K., Jamphel, K., 2017. Pharmacological, ethnopharmacological, and botanical evaluation of subtropical medicinal plants of Lower Kheng region in Bhutan. Integr. Med. Res. 6 (4), 372–387. https://doi.org/10.1016/j. imr.2017.08.002.
- Wirjosentono, B., Batubara, R., Tamrin, H.U., Nasution, D.A., 2020. Preparation and phytochemical characterisation of antioxidant active ethanol extract of agarwood *Aquilaria malaccensis* Lamk leaf (EEAL) using liquid chromatography-mass spectroscopy (LC-MS). AIP Conf. Proc. 2342 (1), 080008. https://doi.org/10.1063/ 5.0046396.
- Wiryono, W., Japriyanto, J., Erniwati, E., 2017. The diversity of locally utilized plants and local botanical knowledge in Central Bengkulu District, Bengkulu Province, Indonesia. Biodiversitas 18 (4), 1589–1595. https://doi.org/10.13057/biodiv/ d180436.
- Wong, Y.F., Chin, S.T., Perlmutter, P., Marriott, P.J., 2015. Evaluation of comprehensive two-dimensional gas chromatography with accurate mass time-of-flight mass spectrometry for the metabolic profiling of plant-fungus interaction in *Aquilaria* malaccensis. J. Chromatogr. A 1387, 104–115. https://doi.org/10.1016/j. chroma.2015.01.096.
- Wong, M.T., Mohamed, R., 2009. Cloning of Phenylalanine Ammonia-Lyase (PAL) gene fragment from Aquilaria malaccensis Lam.(Karas). Mal. For. 72, 45–50.
 Wong, M.T., Siah, C.H., Faridah, Q.Z., Mohamed, R., 2013. Characterization of wound
- Wong, M.T., Siah, C.H., Faridah, Q.Z., Mohamed, R., 2013. Characterization of wound responsive genes in *Aquilaria malaccensis*. J. Plant Biochem. Biotechnol. 22 (2), 168–175.
- Yadav, D.K., Mudgal, V., Agrawal, J., Maurya, A.K., Bawankule, D.U., Chanotiya, C.S., Khan, F., Thul, S.T., et al., 2013. Molecular docking and ADME studies of natural compounds of Agarwood oil for topical anti-inflammatory activity. Curr. Comput. Aided Drug Des. 9 (3), 360–370. https://doi.org/10.2174/1573409911309030012.
- Yang, F., Wang, B., Liu, Z., Xia, X., Wang, W., Yin, D., Li, Y., 2017. Prediction of a therapeutic dose for buagafuran, a potent anxiolytic agent by physiologically based pharmacokinetic/pharmacodynamic modeling starting from pharmacokinetics in rats and human. Front. Pharmacol. 8, 683. https://doi.org/10.3389/ fphar.2017.00683.
- Yunus, S., Md Zaki, N.A., Ku Hamid, K.H., 2015. Microwave drying characteristics and antidiabetic properties of Aquilaria subintegra and Aquilaria malaccensis leaves. Adv. Mat. Res. 1113, 352–357. https://doi.org/10.4028/www.scientific.net/ AMR.1113.352.
- Zainurin, N.A.A., Yumi, Z., Eissa, M., 2018. Agarwood (A. malaccensis) leaf as an alternative halal source of anti-inflammatory compounds. In Products and Services 2018 (i-CHIPS 2018).
- Zulkifle, N.L., Omar, N.A.M., Tajuddin, S.N., Shaari, M.R., 2013. Anti-diabetic activities of Malaysian Agarwood (*Aquilaria* Spp.) Leaves extract. Conference on Industry– –Academia joint initiatives in Biotechnology CIA: Biotech, 13, pp. 5–7.